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PREFACE

The author's purpose in writing this book has been to supply

the reader with a convenient introduction to Diophantine

Analysis. The choice of material has been determined by

the end in view. No attempt has been made to include all

special results, but a large number of them are to be found

both in the text and in the exercises. The general theory

of quadratic forms has been omitted entirely, since that sub-

ject would require a volume in itself. The reader will there-

fore miss such an elegant theorem as the following: Every

positive integer may be represented as the sum of four squares.

Some methods of frequent use in the theory of quadratic forms,

in particular that of continued fractions, have been left out

of consideration even though they have some value for other

Diophantine questions. This is done for the sake of unity

and brevity. Probably these omissions will not be regretted,

since there are accessible sources through which one can make
acquaintance with the parts of the theory excluded.

For the range of matter actually co\-ered by this text there

seems to be no consecutive exposition in existence at present

in any language. The task of the author has been to sys-

tematize, as far as possible, a large number of isolated inves-

tigations and to organize the fragmentary results into a con-

nected body of doctrine. The principal single organizing idea

here used and not previously developed systematically in the

literature is that connected with the notion of a multiplicative

domain introduced in Chapter II.

The table of contents affords an indication of the extent

and arrangement of the material embodied in the work.



IV PREFACE

Concerning the exercises some special remarks should be

made. They are intended to serve three purposes: to afford

practice material for developing facility in the handling of

problems in Diophantine analysis; to give an indication of

what special results have already been obtained and what

special problems have been found amenable to attack; and to

point out unsolved problems which are interesting either from

their elegance or from their relation to other problems which

already have been treated.

Corresponding roughly to these three purposes the prob-

lems have been divided into three classes. Those which have

no distinguishing mark are intended to serve mainly the pur-

pose first mentioned. Of these there are 133, of which 45 are

in the Miscellaneous Exercises at the end of the book. Many
of them are inserted at the end of individual sections with

the purpose of suggesting that a problem in such position is

readily amenable to the methods employed in the section to

which it is attached. The harder problems taken from the

literature of the subject are marked with an asterisk; they

are 53 in number. Some of them will serve a disciplinary

purpose; but they are intended primarily as a summary of

known results which are not otherwise included in the text or

exercises. In this way an attempt has been made to gather

up into the text and the exercises all results of essential or

considerable interest which fall within the province of an

elementary book on Diophantine analysis; but where the

special results are so numerous and so widely scattered it can

hardly be supposed that none of importance has escaped

attention. Finally those exercises which are marked with

a dagger (35 in number) are intended to suggest investiga-

tions which have not yet been carried out so far as the author

is aware. Some of these are scarcely more than exercises,

while others call for investigations of considerable extent

or interest.

Robert D. Carmichael.
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DIOPHANTINE ANALYSIS

CHAPTER I

INTRODUCTION. RATIONAL TRIANGLES. METHOD OF
INFINITE DESCENT

§ I. Introductory Remarks

In the theory of Diophantine analysis two closely related

but somewhat different problems are treated. Both of them

have to do primarily with the solution, in a certain sense,

of an equation or a system of equations. They may be char-

acterized in the following manner: Let f{x, y, z, . . .) be a

given polynomial in the variables x, y, z, . . . with rational

(usually integral) coefficients and form the equation

f{x,y,z, . . .)=o.

This is called a Diophantine equation when we consider it

from the point of view of determining the rational numbers

X, y, z, . . . which satisfy it. We usually make a further

restriction on the problem by requiring that the solution

X, y,z, . . . shall consist of integers; and sometimes we say that

it shall consist of positive integers or of some other defined

class of integers. Connected with the above equation we

thus have two problems, namely: To find the rational num-

bers X, y, z, . . . which satisfy it; to find the integers (or

the positive integers) x, y, z, . . . which satisfy it.

Similarly, if we have several such functions /i(x, y, z, . . .),

in number less than the number of variables, then the set

of equations

Ji{x, y,z, . . .)=o

is said to be a Diophantine system of equations.
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Any set of rational numbers x, y, z, . . ., which satisfies

the equation [system], is said to be a rational solution of the

equation [system]. An integral solution is similarly defined. The

general rational [integral] solution is a solution or set of solu-

tions containing all rational [integral] solutions. A primitive

solution is an integral solution in which the greatest common
divisor of the values of x, y, z, . . . is unity.

A certain extension of the foregoing definition is possible.

One may replace the function f{x, y, z, . . .) by another which

is not necessarily a polynomial. Thus, for example, one may
ask what integers x and y can satisfy the relation

x''-y' = o.

This more extended problem is all but untreated in the liter-

ature. It seems to be of no particular importance and there-

fore will be left almost entirely out of account in the following

pages.

We make one other general restriction in this book; we

leave linear equations out of consideration. This is because

their theory is different from that of non-linear equations

and is essentially contained in the theory of linear congruences.

That a Diophantine equation may have no solution at

all or only a finite number of solutions is shown by the

examples

Obviously the first of these equations has no rational solu-

tion and the second only a finite number of integral solutions.

That the number of rational solutions of the second is infinite

will be seen below. Furthermore we shall see that the equa-

tion x^-\-y^ = z^ has an infinite number of integral solutions.

In some cases the problem of finding rational solutions

and that of finding integral solutions are essentially equiv-

alent. This is obviously true in the case of the equation

^2-1-^2 ^22^ jtqj.^ ^jjg ggj- Qf g^ii rational solutions contains

the set of all integral solutions, while from the set of all integral

solutions it is obvious that the set of all rational solutions is

obtained by dividing the numbers in each solution by an
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arbitrary positive integer. In a similar way it is easy to see

that the two problems are essentially equivalent in the case

of every homogeneous equation.

In certain other cases the two problems are essentially

different, as one may see readily from such an equation as

x^-\-y^^i. Obviously, the number of integral solutions is

finite; moreover, they are trivial. But the number of rational

solutions is infinite and they are not all trivial in character,

as we shall see below.

Sometimes integral solutions may be very readily found

by means of rational solutions which are easily obtained in

a direct way. Let us illustrate this remark with an example.

Consider the equation

The cases in which a; or y is zero are trivial, and hence they are

excluded from consideration. Let us seek first those solutions

in which z has the given value s= i. Since x=?io we may write

y in the form y = i— wx, where m is rational. Substituting

in (i) we have

This yields

whence

im

i + w^'

I— w^

This, with s=i, gives a rational solution of Eq. (i) for every

rational value of m. (Incidentally we have in the values of

X and y an infinite set of rational solutions of the equation

x^-\-y^ = i.)

If we replace m by q/p, where q and p are relatively prime

integers, and then multiply the above values of x, y, z by p^-\-q^,

we have the new set of values

x = 2pq, y = p' — q', z = p^-\-q^.

This affords a two-parameter integral solution of (i).

In § 3 we return to the theory of Eq. (i), there deriving

the solution in a different wa\-. The above exposition has
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been given for two reasons: It illustrates the way in which

rational solutions may often be employed to obtain integral

solutions (and this process is frequently one of considerable

importance); again, the spirit of the method is essentially

that of the Greek mathematician Diophantus, who flourished

probably about the middle of the third century of our era

and who wrote the first systematic exposition of what is now
known as Diophantine analysis. The reader is referred to

Heath's Diophantos of Alexandria for an account of this work

and for an excellent abstract (in English) of the extant writings

of Diophantus.

The theory of Diophantine analysis has been cultivated

for many centuries. As we have just said, it takes its name

from the Greek mathematician Diophantus. The extent to

which the writings of Diophantus are original is unknown, and

it is probable now that no means will ever be discovered for

settling this question; but whether he drew much or little

from the work of his predecessors it is certain that his Arith-

metica has exercised a profound influence on the development

of number theory.

The bulk of the work of Diophantus on the theory of

numbers consists of problems leading to indeterminate equations

;

these are usually of the second degree, but a few indeterminate

equations of the third and fourth degrees appear and at least

one easy one of the sixth degree is to be found. The general

type of problem is to find a set of numbers, usually two or

three or four in number, such that different expressions in-

volving them in the first and second and third degrees are

squares or cubes or otherwise have a preassigned form.

As good examples of these problems we may mention the

following: To find three squares such that the product of any

two of them added to the sum of those two or to the remaining

one gives a square; to find three squares such that their con-

tinued product added to any one of them gives a square;

to find two numbers such that their product plus or minus

their sum gives a cube. (See Chapter VL)

Diophantus was always satisfied with a rational result
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even though it appeared in fractional form; that is, he did

not insist on having a solution in integers as is customary in

most of the recent work in Diophantine analysis.

It is through Fermat that the work of Diophantus has

exercised the most pronounced influence on the development

of modern number theory. The germ of this remarkable growth

is contained in what is only a part of the original Diophantine

analysis, of which, without doubt, Fermat is the greatest master

who has yet appeared. The remarks, method and results of

the latter mathematician, especially those recorded on the

margin of his copy of Diophantus, have never ceased to be

the marvel of other workers in this fascinating field. Beyond

question they gave the fundamental initial impulse to the

brilliant work in the theory of numbers which has brought

that subject to its present state of advancement.

]Many of the theorems announced without proof by Fer-

mat were demonstrated by Euler, in whose work the spirit

of the method of Diophantus and Fermat is still vigorous.

In the Disquisitiones Arithmetics, published in 1801, Gauss

introduced new methods, transforming the whole subject and

giving it a new tendency toward the use of analytical methods.

This was strengthened by the further discoveries of Cauchy,

Jacobi, Eisenstein, Dirichlet, and others.

The development in this direction has extended so rapidly

that by far the larger portion of the now existing body of

number theory has had its origin in this movement. The

science has thus departed widely from the point of view and

the methods of the two great pioneers Diophantus and Fermat.

Yet the methods of the older arithmeticians were fruitful

in a marked degree.* They announced several theorems

which have not yet been proved or disproved and many others

the proofs of which have been obtained by means of such

difficulty as to make it almost certain that they possessed

other and simpler methods for their discovery. ^Moreover

they made a beginning of important theories which remain

to this day in a more or less rudimentary stage.

* Cf. G. B. Mathews, Encyclopaedia Britannica, nth edition, Vol. XIX, p. 863.
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During all the intervening years, however, there has been

a feeble effort along the line of problems and methods in inde-

terminate equations similar to those to be found in the works

of Diophantus and Fermat; but this has been disjointed and

fragmentary in character and has therefore not led to the

development of any considerable body of connected doctrine.

Into the history of this development we shall not go; it will

be sufficient to refer to general works of reference * by means

of which the more important contributions can be found.

Notwithstanding the fact that the Diophantine method

has not yet proved itself particularly valuable, even in the

domain of Diophantine equations where it would seem to be

specially adapted, still one can hardly refuse to believe that

it is after all the method which is really germane to the sub-

ject. It will of course need extension and addition in some

directions in order that it may be effective. There is hardly

room to doubt that Fermat was in possession of such exten-

sions if he did not indeed create new methods of a kindred

sort. More recently Lucas f has revived something of the

old doctrine and has reached a considerable number of inter-

esting results.

The fragmentary character of the body of doctrine in

Diophantine anlysis seems to be due to the fact that the history

of the subject has been primarily that of special problems.

At no time has the development of method been conspicuous,

and there has never been any considerable body of doctrine

worked out according to a method of general or even of fairly

general apphcabihty. The earliest history of the subject has

been pecuHarly adapted to bring about this state of things.

It was the plan of presentation of Diophantus to announce

a problem and then to give a solution of it in the most con-

venient form for exposition, thus allowing the reader but small

opportunity to ascertain how the author was led either to the

problem or to its solution. The contributions of Fermat were

* See Encyclopedic des sciences matliematiqucs, tome I, Vol. Ill, pp. 27-38, 201-

214; Royal Society Index, Vol. I, pp. 201-219.

t American Journal of Mathematics, Vol. I (1878), pp. 184, 289.
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mainly in the form of results stated without proof. JSIore-

over, through their correspondence with Fermat or their rela-

tion to him in other ways, many of his contemporaries also

were led to announce a number of results without demonstration.

Naturally there was a desire to find proofs of interesting theorems

made known in this way. Thus it happened that much of the

earlier development of Diophantine analysis centered around

the solution of certain definite special problems or the demon-

stration of particular theorems.

There is also something in the nature of the subject itself

which contributed to bring this about. If one begins to inves-

tigate problems of the character of those solved by Diophantus

and Fermat he is soon led experimentally to observe certain

apparent laws, and this naturally excites his curiosity as to their

generality and possible means of demonstrating them. Thus

one is led again to consider special problems.

Now when we attack special problems, instead of devising

and employing general methods of investigation in a pre-

scribed domain, we fail to forge all the links of a chain of reason-

ing necessary in order to build up a connected body of doctrine

of considerable extent and wc are thus lost amid our difficulties,

because we have no means of arranging them in a natural

or logical order. We are very much in the situation of the

investigator who tries to make headway by considering only

those matters which have a practical bearing. We do not

make progress because we fail to direct our attention to essential

parts of our problems.

It is obvious that the theory of Diophantine analysis is

in need of general methods of investigation; and it is impor-

tant that these, when discovered, shall be developed to a wide

extent. In this book are gathered together the important

results so far developed and a number of new ones are added.

Many of the older ones are derived in a new way by means of

two general methods first systematically developed in the

present work. These are the method of the multiplicative

domain introduced in Chapter II and the method of functional

equations employed in Chapter VL Neither of these methods
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is here used to the full extent of its capacity; this is especially

true of the latter. In a book such as the present it is natural

that one should undertake only an introductory account of

these methods.

§ 2. Remarks Relating to Rational Triangles

A triangle whose sides and area are rational numbers is

called a rational triangle. If the sides of a rational triangle

are integers it is said to be integral. If further these sides

have a greatest common divisor unity the triangle is said to

be primitive. If the triangle is right-angled it is said to be a

right-angled rational triangle or a Pythagorean triangle or a

numerical right triangle.

It is convenient to speak, in the usual language of geometry,

of the hypotenuse and legs of the right triangle. If x and y

are the legs and s the hypotenuse of a Pythagorean triangle,

then

x'^-\-y" = z^.

Any rational solution of this equation affords a Pythagorean

triangle. If the triangle is primitive, it is obvious that no

two of the numbers x, y^ z have a common prime factor. Fur-

thermore, all rational solutions of this equation are obtained

by multiplying each primitive solution by an arbitrary rational

number.

From the cosine formula of trigonometry it follows im-

mediately that the cosine of each angle of a rational triangle

is itself rational. Hence a perpendicular let fall from any

angle upon the opposite side divides that side into two rational

segments. The length of this perpendicular is also a rational

number, since the sides and area of the given triangle are

rational. Hence every rational triangle is a sum of two Pytha-

gorean triangles which are formed by letting a perpendicular

fall upon the longest side from the opposite vertex. Thus

the theory of rational triangles may be based upon that of

Pythagorean triangles.

A more direct method is also available. Thus if a, b, c
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are the sides and A the area of a rational triangle we have

from geometry

(a+6+c)(--a+&+c)(a-6+c)(a+6-c) = i6^2^

Putting

a==/3+7, b = y-\-a, c=a+^,
we have

{a-\-l3-{-y)cx0y=A^.

Every rational solution of the last equation affords a rational

triangle.

In the next two sections we shall take up the problem of

determining all Pythagorean triangles and all rational triangles.

It is of interest to observe that Pythagorean triangles

have engaged the attention of mathematicians from remote

times. They take their name from the Greek philosopher

Pythagoras, who proved the existence of those triangles whose

legs and hypotenuse in modern notation would be denoted

by 2a-\-i, 2or-{-2a, 2a:-+ 2a+i, respectively, where a is a positive

integer. Plato gave the triangles 2a, a-—i, a-+ 1 . Euchd
gave a third set, while Diophantus derived a formula essentially

equivalent to the general solution obtained in the following

section.

Fermat gave a great deal of attention to problems con-

nected with Pythagorean triangles, and it is not too much to

say that the modern theory of numbers had its origin in the

meditations of Fermat concerning these and related problems.

§ 3. Pythagorean Triangles

We shall now determine the general form of the positive

integers x, y, z which afford a primitive solution of the equation

x2+y2 = s2. (j)

The square of the odd number 2^c+ i is 4/x- +4/^+ 1. Hence
the sum of two odd squares is divisible by 2 but not by 4 ; and

therefore the sum of two odd squares cannot be a square.

Hence of the numbers x, y in (i) one is even. If we suppose

that X is even, then y and z are both odd.
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Let US write Eq. (i) in the form

a-2 = (s+v)(c->0- (2)

Every common divisor of s+j and z—y is a divisor of their

difference 2y. Thence, since s and y are relatively prime odd

nmnbers, we conclude that 2 is the greatest common divisor

of s+Y and z — y. Then from (2) we see that each of these

numbers must be twice a square, so that we may write

z-\-y = 2a-. z — y = 2h~,

where a and h are relatively prime integers. From these two

equations and Eq. (2) we have

x = 2ah, y = a^-b^-, z = a^^b^. (3)

Since x and y are relatively prime, it follows that one of the

numbers a, b is odd and the other even.

The forms of .r. y, z given in (3) are necessary in order that

(i) may be satisfied, while at the same time x, y, z are rela-

tively prime and x is even. A direct substitution in (i) shows

that this equation is indeed satisfied by these values. Hence

we have the following theorem

:

The legs and hypotenuse of any primitive Pythagorean tri-

angle may be put in the form

2ab, a^-b^, a^-\-b^. (4)

respectively, where a and b are relatively prime positive integers

of which one is odd and the other even and a is greater than

b; and every set of numbers (4) forms a primitive Pythagorean

triangle.

If we take a = 2, b = i, we have 4-+3- = 5-; if a =3,. b = 2,

we have 12-4-5- = 13^; ^^'^ so on.

EXERCISES

1. Prove that the legs and hj-potenuse of all integral Pythagorean triangles

in which the hj-potenuse differs from one leg by unity are given by 2a-\-i, 2a--f-2a,

2a-+2a+\, respectively, a being a positive integer.

2. Prove that the legs and h>T)otenuse of all primitive Pythagorean triangles

in which the hj^potenuse differs from one leg by 2 are given by 2a, a^— i, a^-i-i,

respectively, a being a positive integer. In what non-primitive triangles does

the hj'potenuse exceed one leg by 2?
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3. Show that the product of the three sides of a Pj-thagorean triangle is

divisible by 60.

4. Show that the general formulas for the solution of the equation

x-+y-= z*

in relatively prime positive integers .v, y, : are

z = tn-+n-, X, y— 4))}n{}}i-—n-), zh(m^—6)n-n--{-fi^), m>n,

tn and n being relative!}- prime positive integers of which one is odd and the

other even.

5. Show that the general formula; for the solution of the equation

.T-+(2y)*=2-

in relatively prime positive integers .t, y, z are

z=4m*+>2*, x=it(4i>i^—n*), y=:nn,

m and n being relatively prime positive integers.

6. Show that the general formulae for the solution of the equation

in relatively prime positive integers x, y, z are

z=m*+6m^n--\-}i*, x=2tnn{m--\-n-), y=m-—n-, in>n,

m and n being relatively prime positive integers of which one is odd and the

other even.

§ 4. Rational Triangles

We have seen that the length of the perpendicular from

any angle to the opposite side of a rational triangle is rational,

and that it divides that side into two parts each of which is

of rational length. If we denote the sides of the triangle by

X, \\ 2, the perpendicular from the opposite angle upon :; by

h and the segments into which it divides z by zi and 22, Zi being

adjacent to .r and Z2 adjacent to y, then we have

/r=.v--ci-=y2-c22. zi+Z2=z. (i)

These equations must be satisfied if x, y, z are to be the sides

of a rational triangle. ^Moreover, if they are satisfied by pos-

itive rational numbers .v, y, s. Si, Z-2JL then .v, y. z. h are in order

the sides and altitude upon z of a rational triangle. Hence
the problem of determining all rational triangles is equivalent

to that of finding all positive rational solutions of system (i).
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From Eqs. (i) it follows readily that rational numbers

m and n exist such that

x-\-z\=m, X— 2i=—

;

7n

y-\-Z2 = n, y — Z2 = —.
n

Hence x, y, and z, where s = si+S2, have the form

i/ JP
2 \ ni

y = -[ n-\—

z = - m-\-n
2 \ m n

respectively. If we suppose that each side of the given tri-

angle is multiphed by 2mn and that x, y, z are then used to

denote the sides of the resulting triangle, we have

x = n{m'^-\-h'^),

y = m{n"-\-]fi), (2)

z = {m -\-n) (mn— h^)

.

It is obvious that the altitude upon the side z is now 2hmn,

so that the area of the triangle is

hmn(m+ n) (mn— h^)

.

(3

)

From this argument we conclude that the sides of any

rational triangle are proportional to the values of x, y, z in

(2), the factor of proportionahty being a rational number.

If we call this factor p, then a triangle having the sides px,

py, pz, where x, y, z are defined in (2), has its area equal to

p2 times the number in (3). Hence we conclude as follows:

A necessary and sufficient condition that rational numbers

X, y, z shall represent the sides of a rational triangle is that they

shall he proportional to numbers of the form n(m"-\-h^), ?n(n~-\-h~),

{m-\-n){mji— h^), where m, n, h are positive rational numbers

and mn>h^.
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Let d represent the greatest common denominator of the

rational fractions m, n, h, and write

dad
If we multiply the resulting values of x, y, z in (2) by d^ we
are led to the integral triangle of sides x, y, z, where

y=^y.{v^-\-k'),

Z = {p.-\-v){ixv— k-).

With a modified notation the result may be stated in the follow-

ing form:

Every rational integral triangle has its sides proportional

to numbers of the form n(m--\-h-), m{n~+h-), {m-\-n){mn— Jir),

where m, n, h are positive integers and mn >h^.

To obtain a special example we may put m = 4, n = ^, h = i.

Then the sides of the triangle are 51, 40, 77 and the area is 924.

For further properties of rational triangles the reader may
consult an article by Lehmer in Annals of Mathematics, second

series, Volume I, pp. 97-102.

EXERCISES

1. Obtain the general rational solution of the equation

(:x+y-\-z)xyz= u-.

Suggestion.—Recall the interpretation of this equation as given in § 2.

2. Show that the cosine of an angle of a rational triangle can be written in

one of the forms

a-—l3- 2a/3

where a and /3 are relatively prime positive integers.

3. If X, y, z are the sides of a rational triangle, show that positive numbers
a and /3 exist such that one of the equations,

is satisfied. Thence determine general expressions for x, y, 2.
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§5. Impossibility of the System x"-\-y^ = z'^, y'^-\-z^ = fi.

Applications

By means of the result at the close of § 3 we shall now

prove the following theorem

:

I. There do not exist integers x, y, z, t, all di^erent from

zero, such that

It is obvious that an equivalent theorem is the following:

II. There do not exist integers x, y, s, /, all diferent from

zero, such that

/2+a;2 = 2z2, /2_^.2 = 23'2. (2)

It is obvious that there is no loss of generahty if in the

proof we take x, y, s, t to be positive; and this we do.

The method of proof is to assume the existence of integers

satisfying (i) and (2) and to show that we are thus led to a

contradiction. The argument we give is an illustration of

Fermat's famous method of " infinite descent," of which we

give a general account in the next section.

If any two of the numbers x, y, z, t have a common prime

factor p, it follows at once from (i) and (2) that all four of

them have this factor. For, consider an equation in (i) or

in (2) in which the two numbers divisible by p occur; this

equation contains a third number of the set x, y, z, /, and it

.

is readily seen that this third number is divisible by p. Then

from one of the equations containing the fourth number it fol-

lows that this fourth number is divisible by p. Now let us

divide each equation of systems (i) and (2) by p'^\ the resulting

systems are of the same forms as (i) and (2) respectively.

If any two numbers in these resulting systems have a common

prime factor pi, we may divide each system through by ^i^;

and so on. Hence if a pair of simultaneous equations (2)

exists then there exists a pair of equations of the same form

in which no two of the numbers x, y, z, / have a common factor

other than unity. Let this system of equations be

/l2+Xi2 = 2Si2, /i2_^^2^2^,^2. (3)
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From the first equation in (3) it follows that h and xi are

both odd or both even; and, since they are relatively prime,

it follows that they are both odd. Evidently h>xi. Then

we may write

ti=Xi + 2a,

where « is a positive integer. If we substitute this value of

/i in the first equation in (3), the result may readily be put

in the form

(xi+a)2+«2=si2. (4)

Since xi and si have no common prime factor it is easy to see

from this equation that a is prime to both xi and gi, and hence

that no two of the numbers xi -\-a, a, 21 have a common factor

other than unity.

Then, from the general result at the close of § 3 it follows

that relatively prime positive integers r and 5 exist, where

r>s, such that

Xi-\-a = 2rs, (x = r'~—s'^, (5)
or

Xi-ha^r" — s^, a = 2rs. (6)

In either case we have

h^-xi^ = {h-xx){h+xi) = 2a-2{:xi+a)=^rs{f-s'^).

If we substitute in the second equation of (3) and divide by 2,

we have
4rsir-—s-) =yx~.

From this equation and the fact that r and ^ are relatively

prime, it follows at once that r, s, r'^— s^ are all square numbers;

say

r = ii~, s = v-, Y- — s^ = w^.

Now r — s and r-\-s can have no common factor other than
I or 2; hence, from

we see that either

U~^V~ = 2a'r, U^ — V^ = 2W2^, (7)
or

u--\-v- = ii'i-,
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And if it is the latter case which arises, then

Hence, assuming equations of the form (2), we are led either

to Eqs. (7) or to Eqs. (8) ; that is, we are led to new equations

of the form with which we started. Let us write the equations

thus:

h^^x-^ = 22.2, l^- a-o2 = 2y2-
; (9)

that is, system (9) is identical with that one of systems (7),

(8) which actually arises.

Now from (5) and (6) and the relations /i=xi + 2q;, r>5,

we see that

/l = 2^5+ /'2 _ 52> 252+^2- 52 = r-'+ 52 = W^+Zrl.

Hence u<t\. Also,

Hence 'Z£'i</i. Since u and w\ are both less than /i, it follows

that h is less than /i. Hence, obviously, t2<t. Moreover,

it is clear that all the numbers X2, ;>'2, S2, ^2 are different from

zero.

From these results we have the following conclusion: If

we assume a system of the form (2) for given values of x, y,

z, t, we are led to a new system (9) of the same form; and

in the new system ^2 is less than /.

Now if we start with (9) and carry out a similar argument

we shall be led to a new system

h^+X3^ = 2Z3^, h'^ - .T32 = 2^3^,

with the relation /3<^2; starting from this last system we shall

be led to a new one of the same form, with a similar relation

of inequality; and so on ad infinitum. But, since there is

only a finite number of integers less than the given positive

integer i, this is impossible. We are thus led to a contradiction;

whence we conclude at once to the truth of II and likewise

of I.

By means of theorems I and II we may readily prove the

following theorem:
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III. The area of a Pythagorean triangle is never equal to

a square number.

Let the legs and hypotenuse of a Pj'thagorean triangle

be u, V, IV, respectively. The area of this triangle is ^uv. If

we assume this to be a square number p^, we shaU have the

following simultaneous Diophantine equations:

u^-\-v^ — U'~, uv = 2fr. (lo)

We shall prove our theorem by showing that the assumption

of such a system for given values of u, v, w, p leads to a con-

tradiction.

From system (lo) it is easy to show that if any two of

the numbers u, v, iv have the common prime factor /?, then

the remaining one of these numbers and the number p are

both divisible by p. Thence it is easy to show that if any

system of the form (lo) exists there exists one in which w, v,

w are prime each to each. We shall now suppose that (lo)

itself is such a system.

Since w, v, w are relatively prime it follows from the first

equation in (lo) and the theorem in § 3 that relatively prime

integers a and b exist such that «, v have the values 2ab,

a~ — b~ in some order. Hence from the second equation in

(10) we have
p2 = ab{d'-b'')=ab{a-b)ia^b).

It is easy to see that no two of the numbers a, b, a — b, a-\-b,

have a common factor other than unity; for, if so, u and v

would fail to satisfy the restriction of being relatively prime.

Hence from the last equation it follows that each of these

numbers is a square. That is, we have equations of the form

a^m-, b = n~, a-\-b = p-, a — b = q-;

whence
ni^ — n- = q", m~-\-n~= p~.

But, according to theorem I, no such system of equations

can exist. That is, the assumption of Eqs. (10) leads to a

contradiction. Hence the theorem follows as stated above.

From the last theorem we have an almost immediate proof

of the following:
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IV. There are no integers x, y, s, all (liferentfrom zero, such that

x4-y=s2. (ll)

If we assume an equation of the form (ii), we have

{x'^ — y'^)x^y^ = x^y^z^. (12)

But, obviously,

(2xYY+ ix^-y^Y = {x^-\-y^y. (13)

Now, from (12), we see that the Pythagorean triangle deter-

mined by (13) has its area (x'^—y'^)x^y" equal to the square

number x^yh^. But this is impossible. Hence no equation

of the form (11) exists.

Corollary.—There exist no integers x, y, z, all diferent

from zero, such that

EXERCISES

1. The system x''—y'^=kii'^, x'-{-y'^=kv- is impossible in integers x, y, k, ii, v,

all of which are different from zero.

2. The equation x^-\-4y^=z- is impossible in integers x, y, z, all of wliich are

different from zero.

3. The equation 2x^-\-2y^=z- is impossible in integers x, y, z, except for the

trivial solution 2= ±2x-= ±23/^.

§ 6. The Method of Infinite Descent

In the preceding section we have had an example of Fer-

mat's famous method of infinite descent. In its relation to

Diophantine equations this method may be broadly charac-

terized as follows:

Suppose that one desires to prove the impossibihty of

the Diophantine equation

f(Xl, X2, . . ., Xn) =0, (l)

where / is a given function of its arguments. One assumes

that the given equation is true for given values of .ti, X2, . . .,

Xn, and shows that this assumption leads to a contradiction

in the following particular manner. One proves the existence
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of a set of integers wi,M2, • • ., UnSind a. function g{ui, uo, . . .,Un)

having only positive integral values such that

/(«1, H2, . . ., ««)=0, (2)

while

g(Ul, U2, . . ., Un) <g{x\, X2-, • • ., Xn).

The same process may then be appHed to Eq. (2) to prove

the existence of a set of integers v\, V2, . . ., t'„, such that

f(vi, V2, . . ., Vn) =0, g{vi, V2, ., Vn) <g(ui, Uo, -, Un)

This process may evidently be repeated an indefinite number

of times. Hence there must be an indefinite number of dif-

ferent positive integers less than g{xi, X2, . . .,.t„). But this

is impossible. Hence the assumption of Eq. (i) for a given

set of values xi, . . ., Xn leads to a contradiction; and therefore

(i) is an impossible equation.

By a natural extension the method may also be employed

(but usually not so readily) to find all the solutions of certain

possible equations. It is also applicable, in an interesting way,

to the proof of a number of theorems; one of these is the

theorem that every prime number of the form 4n-{-i is a

sum of two squares of integers. See lemma II of § 10.

We shall now apply this method to the proof of the follow-

ing theorem:

I. There are no integers x, y, z, all different from zero„ satis-

fying either of the equations

:i;4-4/=±s2. (3)

Let us assume the existence of one of the equations (3)

for a given set of positive integers x, 3', z. If any two of these

numbers have a common odd prime factor p, then all three

of them have this factor, and the equation may be divided

through by />*. The new equation thus obtained is of the

same form as the original one. The process may be repeated

until an equation

x\^~/[yi^= zbzi^

is obtained, in which no two of the numbers xi, y\, z\ have a

common odd prime factor.
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If zi is even, it is obvious that xi is also even, and there-

fore the above equation may be divided through by 4; a result

of the form

is obtained. The process may be continued until an equation

of one of the forms

ys'^ - 4X3-^ = :i:Z3^

is obtained, in which Z3 is an odd number. Then ys is also odd.

Then if the second member in the last equation has the minus

sign we may write y3"*+C:r =4x3'*. This equation is impos-

sible, since the sum of two odd squares is obviously divisible

by 2 but not by 4. Hence we must have

4x3'^ -\-Z3-=y 3-^.
(4)

Now it is clear that no two of the numbers X3, ys, S3 have

a common factor other than unity and that all of them are

positive. Hence, from the last equation it follows (by means

of the result in § 3) that relatively prime positive integers

r and s, r>s, exist such that

X3^ = rs, Z3=r- — s^, y3^ = r^-'rs^.

From the first of these equations it follows that r and 5 are

squares; say r = fr, s = a~. Then from the last exposed equa-

tion we have
p'+ a^ = y3^.

It is easy to see that p, cr, ys are prime each to each.

The last equation leads to relations of the form

y3 = rr-\-sr, p- = 2riSu a~ = ri--si^,

or of the form

y3=r{^+si^, p"=-rr-s{^, a^ = 2riSi.

In either case we see that 2riSi and rr — si'- are squares, while

ri and Si are relatively prime and one of them is even. From
the relation /'i-—5r = square, it follows that ri is odd, since

otherwise we should have the sum of two odd squares equal

to the even square ri~, which is impossible. Hence si is even.
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But 2ri5i = square. Hence positive integers pi, a, exist such

that ri = pi-, 51 = 2(71-. Hence, we have an equation of the

form pi'^ — 4a-i"* = '"u:'i-. since rr — sr is a square; that is,

we have

4(ri^+t£'i2 = pi-t. (5)

Now the last equation has been obtained solely from Eq.

(4). ]Moreover, it is obvious that all the numbers pi, ai, wi,

are positive. Also, we have

X3^ = rs = p^a- = 2riSi(rr - sr) = 4pr(n^(pi'^- 4ai'^) = 4pr(n^wr.

Hence, o-i<a;3. Similarly, starting from (5) we should be led

to an equation

4<J2 -]- c02' = P2 ,

where croKcri; and so on indefinitely. But such a recursion

is impossible. Hence, the theorem follows as stated above.

By means of this result we may readily prove the following

theorem

:

II. The area of a Pythagorean triangle is never equal to twice

a square number.

For, if there exists a set of rational numbers u, v, w, t

such that

then it is easy to see that

{U+VY = U^+ 2/2, {u - Vy = W2 _ 2/2

.

or,

u-^-4t^^(u'-v'-y.

Again, we have the following:

III. There are no integers x, y, z, all different from zero,

snch that

For, if such an equation exists, we have a Pythagorean

triangle {x~)--{-{y-)-=z-, whose area \x-y- is twice a square

number; but this is impossible.
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EXERCISES

1. In a Pythagorean triangle x--\-y-=z-, prove that not more than one of

the sides x, y, z, is a square number. (Cf. Exs. 4, 5, 6 in § 3.)

2. Show that the number expressing the area of a Pythagorean triangle has

at least one odd prime factor entering into it to an odd power and thence show

that every number of the form p'^—a*, in which p and a are different positive

integers, has always an odd prime factor entering into it to an odd power.

3. The equation 2.v^— 2y^=s- is impossible in integers x, y, z, all of which

are different from zero.

4. The equation a:^+2>'''=£;- is impossible in integers x, y, z, all of which

are different from zero.

Suggestion.—This may be proved by the method of infinite descent. (Euler's

Algebra, 22, § 210.) Begin by writing z in the form

Q '

where p and q are relatively prime integers, and thence show that .t^= q-— ip-,

y^= 2pq, provided that x, y, z are prime each to each.

5. By inspection or otherwise obtain several solutions of each of the equations

6. The equation x'^—y*=2z- is impossible in integers x, y, z, all of which

are different from zero.

7. The equation x^-\-y'^= 22^ is impossible in integers x, y, z, except for the

trivial solution z= ±x"^= ±y^.

8. The equation ?>x*—y^—z- is impossible in integers x, y, z, all of which are

different from zero.

9. The equation x*—Sy^=z- is impossible in integers x, y, z, all of which are

different from zero,

GENERAL EXERCISES

1. Find the general rational solution of the equation x'^-\-y'^=a^, where a

is a given rational number.

2. Find the general rational solution of the equation x-+y-=a--\-b-, where

a and b are given rational numbers.

3. Determine all primitive Pythagorean triangles of which the perimeter is

a square.

4. Find general formulas for the sides of a primitive Pythagorean triangle

such that the sum of the hypotenuse and either leg is a cube.

5. Find general formulse for the sides of a primitive Pythagorean triangle

such that the hypotenuse shall differ from each side by a cube.

6. Observe that the equation x--{-y^=z- has the three solutions

x=2i>!n, y—m-— n-, c=;«-+w-,

where •

m—k--\-kl-\-l-, n=k-—l-\

m=-k-+kl+r\ )i=2kl+r-;

m=k'-+2kl, n=k'-+kl+r-.
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and show that each of the three Pythagorean triangles so determined has the

area

{k^+kl+l-){k^-l^)(2k+l){2l+k)kL (Hillyer, 1902.)

7.* Develop methods of finding an infinite number of positive integral solu-

tions of the Diophantine system

x^+y^=ii\ y'-+z^=v\ 22+.t2=ic^2.

(See Amer. Math. Monthly. Vol. XXI. p. 165. and Encydopedi: des sciences

mathematiques, Tome I, Vol. Ill, p. 31).

8.* Obtain intergal solutions of the Diophantine system.

x^+y-=t-=z^-i-w^, x-—ii'-=u^=z-—y^.

9. Solve the Diophantine system x--\-t=u-, x-—t—v-.

10. Find three squares in arithmetical progression.



CHAPTER II

PROBLEMS INVOLVING A MULTIPLICATIVE DOMAIN

§ 7. On Numbers of the Form x~-haxy-{-by"

Numbers of the form w^+ w- have a remarkable property

which is closely connected with the fact that the equation

x^-{-y-=z^ has a simple and elegant theory. This propety

is expressed by means of the identities '

{m^-\-ffi) {p^-]-q^) = imp+ nq)-+ {mq— np)-,

= {mp — nq)'"+ {mq+npY. (i)

A part of what is contained in these relations may be expressed

in words as follows: the product of two numbers of the form

nfi+n^ is itself of the same form and in general in two ways.

If in (i) we put p =m and q^n, we have

(m^ — n"Y+ {2mnY = (w^+ w^)^.

Thus we are led to the fundamental solution

x = m~ — n", y = 2mn, z = m^-\-n'^,

of the Pythagorean equation x--{-y^ = z^.

In a similar manner, from the relations

= (;/r^ — T^mn-)-+ {^nt^n — n^)'^,

we have for the equation xr+y-^z^ the following two double-

parameter solutions

x^nfi+mn^, y= m^n+ ii^, z = nir-\rn";

x = m^ — 2,ni7i^, y = ^7n~n — n^, z = ni'^+n^.

Thus, if we take m = 2, n=i, we have io-+ 5- = 5^, and

24
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It is obvious that we may in a similar way obtain two-param-

eter solutions of the equation x--\ry'^ — z^ for every positive

integral value of k.

Again from (i) we see that the equation

has the four-parameter solution

x = mp^nq, y = mq— np, n — tnp — nq, v = 7nq-\-np.

Thus, if we put ;»=3, n = 2, p = 2, q = i, we have in particular

82+ 12 = 42+ 72,

There are several kinds of forms which have the same

remarkable property as that pointed out above for the form

m^-{-n^. Thus we have, in particular,

{m^-\-amn-\-bn^){p^-\-apq+bq~) =r~-\-ars-\-bs^, (2)

when
r = mp — hnq, s^np-\-mq+anq,

as one may readily verify by actual multipHcation. This is

a special case of a general formula which will be developed

in § 12 in such a way as to throw light on the reason for its

existence. A special case of it will be treated in detail in § 8.

EXERCISES

1. Find a two-parameter solution of the equation x^+axy-\-by^—z^.

2. Find a two-parameter solution of the equation x'^-\-axy+by'^=z^.

3. Describe a method for finding two-parameter solutions of the equation

x^-i-axy-\-by-=z for any given positive integral value of k.

4. Show that {m^-\-amn-]-n^){p'^-\-apq-{-q^)= r^+ars-\-s-, where r, 5 have

either of the two sets of values

r=mp—nq, s=np-]-mq-{-anq;

r=mq—np, s=tjq-\-mp+anp.

5. Find a four-parameter solution of the equation

x--\-axy+y^= u--\-auv+v^.

6. Find a six-parameter solution of the system

x-+axy+y'^=ti.--\-auv+v-=z'^-{-azt-\-t^.

7. Find a two-parameter integral solution of the equation x-+y^=z^+i.
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§8. On the Equation x^ — Dy^ = z'^

We shall now develop a general theory by means of which

the solutions of the equation

x^-Dy'^=z^ (i)

may be found. Naturally D is assumed to be an integer.

Without loss of generality it may be taken positive; for if it

were negative the equation might be written in the form

z^— { — 0)-^ = x^ , where —Dh positive. If D is the square

of an integer, say, D = d-, the equation may be written

x^^z'^+ idy)'^

so that the theory becomes essentially that of the Pythagorean

equation x--\-y^ = z'^. Accordingly, we shall suppose that D
is not a square.

By suitably specializing Eq. (2) of the preceding section

we readily obtain the following two-parameter solution of (i):

a; = w^+Z)«^, y = 2mn, z = ni^ — Dn~.

But there is no ready means for determining whether this is

the general solution. Consequently we shall approach from

another direction the problem of finding the solution of (i).

We shall first show that Eq. (i) possesses a non-trivial

solution for which s = i ; that is, we shall prove the existence

of a solution of the equation

x^—Dy^ = i. (2)

different from the trivial solutions x^ ±1, y = o.

For this purpose we shall first show that integers u, v exist

such that the absolute value * of the (positive or negative) real

quantity u— v\/D is less than i/v and also less than any pre-

assigned positive constant e. (By \^D we mean the positive

square root of D.) Let t be an integer such that /e> i. Now
give to V successively the integral values from o to / and in

each case choose for u the least integral value greater than

* By the absolute value of A is meant A itself when A is positive and —A
when A is negative. We denote it by |^l.
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"o^D. In each case the quantity ii —v^D lies between o and
I and in no two cases are its values equal. If we divide the

interval from o to i into t subintervals, each of length i//,

then two of the above values of u — v^/D^ say u' —v'Vd and

u" — v"\''D, must lie in the same interval. Then the expression

{u'-u")-{v'-v"WD

is different from zero, is of the form u—vVd and has an abso-

lute value less than i/t and hence less than e. That this abso-

lute value is less than that of i/{v' — v") follows from the fact

that the difference of v' and v" is not greater than /. This

completes the proof of the above statement concerning the

existence of u, v with the assigned properties.

From the existence of one such set of integers n. ? it follows

readily that there is an infinite number of such sets. For,

let u, V be one such set. Let ei be a positive constant less

than \u — v\'''D\. Then integers ui, Vi can be determined

such that ui — viVv is in absolute value less than i/z)i, and

also less than ey. It is then less than e. Thus we have a

second set ui, vi satisfying the original conditions. Then,

letting €2 be a positive constant less than \ui—viVD\, we
may proceed as before to find a third set ico, V2 with the required

properties. It is obvious that this process may be continued

indefinitely and that we are thus led to an infinite number
of sets of integers u, v such that u—vVd is in absolute value

less than e and also less than the absolute value of i/v.

Now let « and v be a pair of integers determined as above.

Then we have

u+vVd\ ^\u-vVd\-\-\2vVd\<

Hence

\u^-Dv^\ = \u-{-vVd\ • \u-vVd\ <

so that

-{-\2vVD\.

+ 21

u^-Dv^\<^-\-2Vd<i-\-2VD.

Since \u^—Dv^\ is less than 1 + 2VZ) for every one of the in-

finite number of sets u, v in consideration, and since its value
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is always integral, it follows that an integer / exists such that

for an infinite number of sets of values u, v. It is then obvious

that there is an infinite number of these pairs ui, vi\ u-z, V2', us,

V3; . . ., such that Ui— Uj and vt— vj are both divisible by I for

every i and j. Let u', v'; u" , v" be two pairs belonging to

this last infinite subset and chosen so that 11" 9^ ±11' and

v"9^±.v'. It is obvious that this choice is possible. From

the equations

we have (by Formula (2) of § 7)

:

{li'u" -Dv'v'y-Diii'v" -u"v'T~=^P.

Here we take u' =m, ic" = p, v' = n, v"=—q, D=—b, in apply-

ing the formula referred to.

Setting

u'u"-Dv'v" n'v"-u"v' , ,

^
=

1
' y

= ^^' ^^^

we have
X^-Dy^ = ^. (4)

It remains to show that the values of x and y in (3) are integers.

On account of (4) it is obviously sufficient to show that y is

an integer. That y is an integer follows at once from the

equations u' = u" -\-ixl, v" = v'-^vl, by multiplication member

by member. We show further that y^^o. If we suppose

that y = o, we have

u'v" - u"v' = o, uV - Dv'v" = ±/.

These equations are satisfied only if u" = ±u' , v" = zLv\ relations

v/hich are contrary to the hypothesis concerning m', u", v', v".

We have thus established the fact that Eq. (2) has at least

one integral solution which is not trivial. Since we may asso-

ciate with any solution x, y of (2) the other solutions —x,y;
— X, —y; x, —y; it is clear that there is at least one solution

of (2) in which x and y are positive.
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Let xi, yi, and X2, >'2 be any solutions of (2), whether the

same or different. Then we have

I = (xi^-Dyi^)(x2^-Dy2-) = {xiXo+Dyiyoy-Dlxiyo+XoyiY,

so that XiX2-{-Dyiy2 and Xiy2+X2yi afford a solution of (2).

Hence from the solution x, y, whose existence has already

been proved, we have a second solution x^-\-Dy~, 2xy. It is

easy to show that this process may be continued and that it

will lead to an infinite number of solutions of (2). But this

problem is a special case of one to be treated presently; and
hence will not be further pursued now.

In order to come upon the more general problem let us

seek solutions of Eq. (i) in which z shall have the positive value

tr; that is, let us seek solutions of the equation

^-Df = a^. (5)

li x = xi, y = yi is a. positive solution of Eq. (2) then it is clear

that x = (TXi, y = ayi is a positive solution of (5). Hence from

what precedes we have at least two positive solutions of (5).

Now let x = ti, y = u\; x = t2, y = U2 be any two solutions

of Eq. (5) and write

ti-htciVn t2-\-u2^D t+uVo
(6)

where / and u are rational numbers. Then

f_ t\t2-\-DU\U2
V ,

/lM2+ ^2«lU= .

(7)

From (6) we have

ti-UiVP i2-U2^D_t-uVD ,Q.
. (8)

a a cr

Multiplying Eqs. (6) and (8) member by member and making
use of the relations

h^-Du{^ = a^ t2--Du2- = (r-, (9)

we have

t^-Dii' = a\ (10)
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Hence x = t, y = u afford a rational solution of (5), t and u

having the values given in (7).

We shall now point out two cases in which this solution

is integral.

Suppose that a- is a factor of D. Then from (9) it follows

that 0- is a factor of both /i and to and hence from (7) that u

is an integer. Then from (10) it follows that t is an integer.

Suppose that *

^D^a" mod 40--;

that is, that a^ is a remainder obtained on dividing 4D by

4a-. Then a is evidently an even number. Write a = 2p.

Then we have D= p^mod4p^. Hence D is divisible by p'.

Then from (9) it follows that both /i and (2 are divisible by

p, since <r = 2p. Put

D^dp"^, ti = eip, t2 = d2P.

Then d is odd. Moreover, the following relations exist, as we

see from (9) and (7)

:

e,2-dui^ = 4, d2--du2-=4; (11)

U=^(dlU2-^62Ul). (12)

From Eqs. (11) we see that ^1 and «i are both odd or both

even, and also that 62 and W2 are both odd or both even. Then

from (12) it follows that u is an integer and hence from (10)

that / is an integer.

We are now in position to prove readily the following

theorem

:

Let D be any positive non-square integer and let a be any

positive integer such that D= o mod a- or 40= 0^ mod 40-2. Let

x = ti and y = u\be the least positive integral solution of the equation

Then all the positive integral solutions f of this equation are

contained in the set

X = tn, y = Un, «=I, 2, 3, . . . ,

* The symbol = is read is congruent to. For the elementary properties of

congruences see the author's Theory of Numbers, pp. 37-41-

t It is obvious that all integral solutions are readily obtainable from all pos-

itive integral solutions.
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where

^"~ n-l

_ I

a

21

,

n(n-i)(n-2)(n-^) ^^, „-* 41
H ; Lf tl Ui^-\-.

-7/1 «lH
;

Vti Hi^+ .

That all these values indeed afford solutions follows readily

from the fact that the quantities /„ and Un so defined satisfy

the relation

0"

For then we also have

'l,-u,\/D\" j„-t(„\/D

a } a

whence

as one easily shows by multiplying the preceding two equations

member by member and simplifying the result by means of the

relation ti^—Dui- = a". That these solutions are positive is

obvious. That they are integral follows from the results

associated with Eqs. (7) and (10).

It remains to be shown that there are no other positive

integral solutions than those defined in the above theorem.

Let x = T, y = U he any positive integral solution of Eq. (5 ^^^).

Then, from the relation

t+uVd t-uVd r--DU^= ___— =1

it follows readily that

T-U^D^ ^T+UVd
o<- <i< .

0" a

Hence from (13) it follows that

tn+ Hn^'D tn+l + Hn+l^^D
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Now suppose that the solution T, U does not coincide with

any solution given in the above theorem. Then for some

value of n we have the relations

:

whence

or

But

tn-\-UnVD T^UVD tn-}-n„VD tl+UiVP

Tt^UVD a /i+«i\ D
I < =< .

(J adn — HnVD) tn—Un^D
tn+Un^D tn--DUn- <J

Thence we have

T^-LWD tr,-l(n^^D ii^H^VD
i< < .

a a <j

Writing _ _
T-hUVP t„-nn\'D _ r-^U'VD

(J a (7

where T' and U' are rational, we have x='T', y=U' as a solu-

tion of (5 ^'^). It is integral, as we see from the results

associated with Eqs. (7) and (10). ^Moreover, the relations

i< < (14)
a fl-

are verified.

Since {T+ UWD){T' -UWd^=ct''-, it follows from the first

inequality in (14) that T' — V'\'D is positive and less than

a, and hence that T' and JJ' are both positive. If we suppose

that T'^ti. it follows from the relations, T'-—DU''- = a'-,

ti~ —Dur = a-, that U'^ni, a result in contradiction with

relation (14). Hence, T' <ti and U' <ui. But this is con-

trary to the hypothesis that t\, Ui is the least positive integral

solution of (5
'^'^). Hence the given positive solution T, U

must coincide with one of those given in the theorem.

This completes the demonstration of the theorem.
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It is clear that the value c7 = i satisfies the requisite conditions

on a for every non-square integer D, so that the above theorem

is apphcable in particular to ever\' equation of the form

x-—D'f = i. In order to apply the theorem in a particvdar

case it is necessary first to find, by inspection or othenv-ise,*

the least positive integral solution.

As an illustrative example, let us consider the equation

.T- — 7}'2 = i. If we try successively the values i, 2, 3, . . .

for y we find that 3 is the least positive integral value of y for

which there is a corresponding integer x sati5f}'ing the given

equation. This value is a: = 8 so that x* = S, y = i is the least

positive integral solution of the equation x- — ']y- = i. Setting

D = 7, 0-= I, /i =8, «i =3., in the last two equations of the above

theorem, we have formulae for the general positive integral

solution of the equation .v- — 7y- = i. Giving n successively

the values i, 2, 3. . . ., the particular positive integral solutions

are obtained without repetition and in the order of increasing

magnitude. The first three of these solutions are

S, 3; 127,48; 2024,765.

EXERCISES

1. Show how all integral solutions of the equation x-—Dy-= — i may be

obtained from one of them, D being as usual a positive non-square integer.

Suggestion.—Observe that the relations a'-—Db'-= — i, c-—Dg-=— i imply

the relation (ac+Dbg)-— D{ag+bc)- = 1.

2. Solve each of the Diophantine equations .v--|-i= 2_v-, .r-— 1= 2V-.

3. Let Sn represent the sum of the legs and hn the hj'potenuse of an integral

Pj'thagorean triangle in which the legs differ by unity. Show that even,- pos-

sible pair of values Sn and hn is determined by the relation

{^+ V2){3+ 2V~2)''=S„+hnVl,

Sn and hn being rational.

4. Find all integral Pjthagorean triangles in which the legs differ bj^ 2.

5. Obtain the general integral solution of each of the equations .v-— 5y-=4,

x^— 2oy-= 4.

6. Obtain a formula gi\nng an infinite number of integral solutions of the

equation x-— 193'-= 81.

* How this may be done, by developing the numerical value of V^ into a

continued fraction, is explained by WTiitford, in The Pell Equation (New York,

1912). When D is 1620, the value of .v has three figures; when Dis 1621, it has

76 figures.
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7. Find the general rational solution of the equation x-— Dy'-= 4. By means
of this rational solution obtain an infinite number of integral solutions.

8. Find the smallest integral solutions of x^— 16203;2= i and x-—i666y^= i.

§ 9. General Equation of the Second Degree in Two
Variables

Let us consider the general Diophantine equation of the

second degree in two variables

ax^-\-2bxy-\-cy"-\-2dx-\-2ey-\-f= o, (i)

where a, b, c, d, e, f are integers.

In case ac— b^ = o, the equation may be written in the form

{ax+ by) -+ 2adx+ 2aey+ af= o.

In order to obtain rational solutions it is sufficient to put

ax-\-by = t, 2adx-\-2aey-\-af=^—t'-, (2)

where i is any rational number, and solve these equations for

x and y. This gives, in general,

— bf— 2aet— abf
x =

2a{bd— ae)

f+ 2dt-\-af
(3)

2{bd— ae)

If the solution is to be integral, then t must be integral, as one

sees from the first equation in (2). Then from (3) it follows

that a necessary and sufficient condition on the integer t is

that it shall satisfy the following congruences:

f+ 2dt-{-aJ=o mod 2 {bd— ae)

,

bfi-{-2aet-}-abf^oinod 2a{bd— ae).

In any particular case the general solution of this system of

congruences may be determined by inspection.

In case ac— b'^9^0 the solution is not so easily determined.

Multiplying Eq. (i) through by (ac — b^y we have a result

which may be put in the form

au~+ 2buv+ CT- = m, (4)
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where
u={ac — b'^)x — {be— cd)

,

(5)

u={ac — b^)x — {be— cd)

,

v^iac — b^)y — {bd— ae)

,

m=(ac-b'^){ae'^-^cd''-\-fb'~-acf-2bde).l

Thus the problem of solving Eq. (i) is reduced to that of

solving Eq. (4) for u and v and choosing those values only of

u and V for which x and }' have the desired characteristic*

But the problem of solving Eq. (4) is identical with that of

the representation of a given integer by means of a binary

quadratic form. The plan of this book does not permit the

detailed development of this latter subject. (See the preface.)

Consequently the problem of solving Eq. (i) will be dismissed

with this remark.

§ 10. Quadratic Equations Involving- More than Three
Variables

Having now developed the general theory of the equation

and certain generalizations of it involving still a total of three

variables, it is natural to extend the problem in another direc-

tion, namely, by increasing the number of variables. We
should thus be led next to consider the equation

x^-\-y^-\-u^ = fi. (i)

Now the classes of numbers which have been involved in

the larger part of our previous theory and which have given

rise to the most interesting results, namely, those defined by

forms such as x^-\-y^. and x^—Dy^, have had the following re-

markable property: the product of any two numbers in one

of the classes is itself in that class. We shall express this fact

by saying that the numbers of the class form a domain with

respect to multipKcation. The sets of numbers mentioned

* If an integral solution is desired we may choose those values only of u and v

for which x and y are integral. When x and y are restricted merely to be rational

every solution of (4) leads through (5) to a solution of (i).
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also have this further property: from the representation of

two numbers in the given form that of their product is readily

obtained by means of an algebraic formula.

Numbers of the form x^-'ry^-j-u^ do not form a domain with

respect to multiphcation. This may be shown by means of

an example. We have

3 = l2+i2+i2^ 5 = 22+l2+o2, 2I=42+ 22+l2,

while neither 15 nor 63 can be expressed as a sum of three

integral squares.

But if we should enlarge the set of numbers x--\-y^-\-u'^

so that the new set shall contain all numbers of the form

x^-{-y^-\-u^-\-v^ then the set so enlarged forms a domain with

respect to multiphcation. This is a special case of a more

general result which we shall presently give. In view of the

existence of this domain with respect to multiphcation we have

a direct means of treating the problem of solving the equation

x^-hy^-+u^~^ir-=f. (2)

Putting to zero the quantity representing v in this solution and

restricting the values of x, y, u, t accordingly, we should arrive

at a solution of Eq. (i).

We proceed at once to a more general problem including

that concerning Eq. (i). Let us consider the Diophantine

equation
x;^+af~-Vhv? = f. (3)

where a and h are given integers. When a = h = i the equation

is the same as (i). We shall first treat the more general equa-

tion
^2 _|_ ay2+ hifi -^abv^ = f, (4)

because, as we shall now show, the form of the first member

defines a class of numbers which form a domain with respect

to multiphcation.

, Let us employ the notation

g(x, y, u, v) =x--\-ay-^hi^-^abi^.
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(5)

(6)

Then it may be readily verified that *

g{x, y, u, v)-g{xi, yi, uu v\) =g{x2, >'2, ti2, V2)

where
X2 = xx\ — ayyi — huu\ -\- abvvi

y2 = xyi -\-Xiy — hiivi — hu\i\

U2 = uxi-{-uiX-\-avyi-\-av\y,

V2 = tVYl — VlX— «Vi + WiV.

It is obvious that Eq. (5) will also be satisfied by values X2, >'2,

U2, V2 obtained from (6) by replacing any number of the quan-

tities X, y, u, V, xi, yi, wi, vi by their negatives. In case

a^b = i still other values of X2, y2, U2, V2 may be obtained

by any interchange of the quantities x, y, u, v or of the quan-

tities xi, yi, ui, vi among themselves. In case a=i and b^^i

the elements of the following pairs may be similarly inter-

changed: X, y; u, v; xi, yi; ui, vi. Not all the resulting

values of X2, y2, uo, V2 will be distinct, though there will in

general be two or more independent sets.

Thus we see that the class of numbers defined by the form

x^-\-ay^-\-bu-+abv" form a domain with respect to multipHcation

and that the product of any two numbers of the class is readily

expressible in the given form, and frequently in several ways.

From Eqs. (5) and (6) and the transformations of them

indicated above, we have the following relations:

{g{x,y,u,v)}'^=gi.x-—ay-—bit--\-abv-, 2xy—2bitv, 2ux+2avy, o)

= g{x-—ay'-\-bu''—abv-, 2xy-'r2bia', o, 2vx—2iiy),

O, 2llX—2GVy, 2VX-\-2Uy),

2X\, 2avy, 2uy),

2buv, 211X, 2uy),

2biiv, 2avy, 2vx),

2.VV, 2UX, 2VX).

= g{x- -{-ay-— bit'-— abv-,

— g{x-— ay--\-b!i--\-abv'^,

— g{x--\-ay-— bii--\-abv-,

— g{x'^-\-ay--\-bu-— abv-,

= g(x-— av-— bu - — abv"-

(7)

^ * If in these relations we take a= b= i we shall have a set of formula; to which

one is led directly by means of quaternions. Thus if we write

{x+iy-]rjit—kv){xi-\-iyi+jni-\-kvi)= X2-{-iy2-{-juo-{-kv2,

where /, j, k are the quaternion units, we may readily determine .To, y2, "2, z'2- by
direct multiplication of the quaternions in the first member. We obtain the

values gotten from (6) by putting a=b=i. Taking the norm of each member
of the equation in this footnote we have the special case of equation (5) for which

a=b=i.
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Let us return to the consideration of Eq. (4), writing it

now in the form
a^-\-al32-\-bp--\-aba^ = fi, (8)

where a, /S, p, a, t are the integers to be determined. It is

clear that we have a four-parameter solution of this equation

by taking g{x, y, u, v) for the value of / and the arguments

(in order) in any right member of (7) for the values of a, 13,

p, a, respectively.

Similarly for the equation

a2+a/32+ &p2=/2, (9)

we have the following four-parameter solution:

t = x"-\- ay~ -\-hii--{- abv^,

a = x~ — ay'~ — bu~-{- abv^,

fi
= 2xy—2buv,

p = 2ux-{-2avy,

where x, y, u, v are arbitrary integers. It is also possible to

obtain three-parameter solutions of (9) in several ways. For

instance, by taking ii; = o in next to the last equation in (7),

we have the following solution

:

t = ay'^-[-bu"-\-abv^, a = ay^-\-bu" — abv^, I3
= 2buv, p = 2avy.

Whether the above formulae give the general integral solu-

tions of Eqs. (8) and (9) for a given a and b when x, y, u, v

are restricted to be integers is a question which is not

answered in the preceding discussion. It appears to be diffi-

cult of treatment so long as a and b are unrestricted. We
shall take it up only for the most interesting special case,

namely, that of the equation

a-2^-/+s2 = /2, (10)

This is a special case of Eq. (9). Modifying our notation,

we may write the first solution obtained above in the form

/ = w2+ «2+ ^2_|.^2;

x = m^ — n^ — p^-\-q^,

y = 2mn—2pq,

z = 2mp-{-2nq.

(11)
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For the case of Eq. (lo) the other solutions obtained for Eq.

(9 ) are special cases of that given in (ii).

Taking m — ^, « = 3, P=t-, 5 = 2, we have the particular

instance 32+ 14.2+ 182 = 232.

We shall prove that formulae (11) afford the general integral

solution of Eq. (10) if each of the second members is multi-

plied by the arbitrary integral factor d. In this demonstration

we shall have use for certain lemmas. These will first be

proved. They constitute in themselves remarkable theorems.

They are due to Fermat.

Lemma I. // a number is expressible as a sum of two integral

squares a'^-\-j3^ and if the quotient {a- -\- ^")/ {a~ -[-h^) is an in-

teger m, where a and b are integers and a--{-b" is a prime number,

then m is also a sum of two integral squares.

We have

a2+ 62 (a2+ 62)2 (02+ i2)2

aa±|36\2 /a^T/3a\2

m =

d'^b'^l \d'+b-\

It is sufficient to show that one of the numbers aa±(3b is a

multiple of a--\-b~, and hence that their product is such a

multiple, since a2+J2 jg g^ prime. But their product is

a^a^-^''b-' = dHa^-h0^)-0'Ha^--^b^-) = {ma^-(3''){a''-{-b^).

Hence lemma I is established.

Lemma II. Every prime number of the form 4«+ i can be

represented in one and in only one way as a sum of two integral

squares.

We start from the theorem that — i is a quadratic residue

of every prime number of the form 4;z + i and a quadratic

non-residue of every prime numljer of the form 4»+3. (See

the author's Theory of Numbers, p. 79.) This is equivalent

to saying that every prime number of the form 4»+i is a

factor of a number of the form /2+ 1 where t is a positive integer,

while no prime number of the form 4«+ 3 is a factor of such

a number /2+1. if -^vg take for / the least integer such that
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a prime number p of the form 4»+ i is a factor of /-+i, it is

clear that we have the following relations:

f+ i=pk, k<p.

Now consider the set of numbers

l2+ I, 2^+1, 32+1, 42+1, .... (12)

It is obvious that no one of these numbers contains two prime

factors neither of which is a factor of a preceding number of

the set; for, if so, the smaller of these primes must be a factor

of a number t~-\-i with a complementary factor less than

itself and hence less than the other prime.

Arrange all prime numbers not of the form 4^+3 in the

order in which they occur as factors of numbers in the set

(12); thus:

pl = 2, p2 = S, ^3 = 17, /'4 = I3, P5, p6, . . . . (13)

This set contains every prime of the form 4«+ i.

Suppose that pm is a prime number of the set (13) which

is not expressible as a sum of two integral squares. Let fi-\-i

be the first number of the set (12) of which pm is a factor and

by means of which pm was assigned its place in (13). Then

we have

Pmkm = t-^I, (14)

where km is such that every prime factor of km appears earher

than pm in the set (13). If every prime factor of km is a sum
of two integral squares, then a repeated use of lemma I in

connection with Eq. (14) would lead to the conclusion that

pm is a sum of two integral squares. But this is contrary

to the hypothesis concerning pm. Hence there is some prime

factor of km which is not expressible as a sum of two integral

squares.

Thus we have proved that, if any prime of the set (13) is

not expressible as a sum of two integral squares, then there is

an earlier prime in the same set which hkewise is not expres-

sible as a sum of two integral squares. This is in evident

contradiction with the fact that the first primes of this set are

each expressible as a sum of two squares. Hence every prime
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in set (13), and hence every prime of the form 4«+ i, is ex-

pressible as a sum of two integral squares.

It remains to show that no prime p can be represented in

two ways as a sum of two integral squares. This we shall do

by assuming an equation of the form

p=^d'+b' = c'~^d\ (15)

where a and c are even and h and d are odd, and proving that

aP' = c^, b^ = d^. From (15) we have

f = iac-^bdy^(ad-bcy = (ac-bdy-{-(ad-\-bc)2,

p(a^-c^) =aHc^-\-d'') -c^{a^-\-b^) = {ad+bc)(ad-bc).

From the last equation it follows that /> is a factor of one of

the numbers ad-\-bc, ad— be. Now, neither of the numbers

ac-^rbd or ac — bd is equal to zero, since both of them are odd.

Therefore, from next to the last equation we see that ad— be

and ad+bc are both less than p in absolute value. But one

of them is divisible by p, and hence that one is equal to zero.

Therefore, a^/c'^ = b'^/d". From this relation and (15) it follows

at once that a'^ = e'^, b^ = d-.

This completes the proof of lemma II.

It is obvious that no prime of the form 4»+3 can be rep-

resented as a sum of two integral squares; for, if so, one square

must be even and the other odd, and in this case their sum
is of the form 4W+1.

Lemma III. Let p be any prime number of the form 411+1
and write p = a^-\-b'^, where a and b are integers. Let m be any
integer such that pm=cr+^-, where a and 13 are integers. Then
there exists a representation of m as a sum of two integral squares,

such that the representation a- +(3- of pm is obtained from the

above representations of p and m by multiplication according to

the formula

(a^-f 62)(c2+(f2) = (ac+bdy^-^iad-bcy.
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That m has the representation (i6) was shown in the

proof of lemma I. That this representation has the further

property specified here may be verified by a direct computation.

Corollary. If h is a composite number containing no

prime factor of the form 4W+3 and if we write // = //i//2, where

hi and lio are positive integers, then every representation of h as

a sum of two integral squares is obtained by taking every repre-

sentation of 111 and J12 and multiplying these expressions in

accordance with the formula

{a'-^b^~){c'~-hd^~) = {ac±bd)--'+ (adl^bcy.

We are now ready to return to the consideration of Eq. (10).

We shall suppose that the integers x, y, z, t contain no com-

mon factor other than unity. Then at least one of them is

odd. If t is even one of the numbers x, y, z is even; suppose

it is X. Then y~-{-Z" is divisible by 4 and hence y and z are

even. Then .t, }', z, t have the common factor 2 contrary to

hypothesis. Hence / is odd. Then one of the numbers a%

y, z is odd. Suppose it is x. Then y'^-\-z^ is divisible by 4
and hence y and z are even.

Now write Eq. (10) in the form

(/-x)(/+x)=y2+22, (j^)

Suppose that t — x and t-\-x have a common odd prime factor

r in common, where ;" is of the form 4;? +3. Then r is a factor

of {t— x)-\-{t-^x), and hence of /, and hence likewise of x, while

f+z-^omodr. (18)

If 2 is not divisible by r then there exists an integer Z\ such

that

zzi = i mod r.

(See the author's Theory of Numbers, p. 43.) Hence

(y2i)"+ i=o mod r.

But this is impossible, since — i is a quadratic non-residue

of every prime number of the form 4W+3. Hence, z, and

therefore y, is divisible by r. Then x, y, z, t have the common
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factor r, contrary to hypothesis. Hence t— x and t-\-x have

no common prime factor of the form 4W+3.

If congruence (18) is verified we have just seen that y
and z are both divisible by r. Hence from (17) it follows

that if either t— x or t+x contains a factor r of the form 4«+3
it contains that factor to an even power. From this result

and the foregoing lemmas it follows at once that integers m,

n, p, q exist such that

t-\-x = 2{m"-\-q'^), t— x = 2(n~-\-p~),

since both t—x and t-{-x are even. Hence / and x have the

form given in (11), while

/+ 22 = 4(,,,2+ ^2)(„2+ ^2),

Since y and z are even it now follows readily from the corollary

to lemma III that for a given /, x, y, z the integers w, n, p, q

may be so chosen that y and z are representable in the form

given in (11).

Hence we conclude that formulae (11) afford the general

integral solution of Eq. (10) if each of the second members

is multiplied by the arbitrary integral factor d.

EXERCISES

1. By means of equations (5), (6), (7) find values of ^, jj, n, v such that

Apply this result to the solution of each of the equations

$2+0772+V+aii'2= /3^ tij^a7)-^-hti'-= t\

finding a four-parameter solution of the former and a one-parameter solution

of the latter. Here $, 77, fx, v, t are the integers to be determined.

2. Obtain an eight-parameter solution of the equation

X'-{-ay--\-bu'^-]rabv-=Xi--\-ayi^-\-hui'^-\-abvi^,

where x, y, u, v, Xi, yi, Ui, Vi are the integers to be determined.

3. Obtain a six-parameter solution of the equation

x--\-ay-+bz-=u-+av--\-bic~,

where x, y, z, u, v, w are the integers to be determined.

4. Find an integral solution of the equation

involving at least four independent parameters.
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5. Find an integral solution of the equation

x'^-\-2y'— u--\-v'^-{-u''^,

containing at least two arbitrary parameters.

6. Given a relation of the form

A^+B^+a=k{a''+b^+c^),

where A, B, C, a, b, c, k are integers and aBy^bA; find a one-parameter solution

of the equation

x-+y'^+z-= k{ii-+v^+'cv-).

Find several values of k, less than 100, and the corresponding integers A, B, C,

a, b, c such that the first equation stated in this problem is satisfied. In par-

ticular, show that k may have the values k=7, 19, 67. (Realis, 1882.)

§ II. Certain Equations of Higher Degree

Let us consider the equation

a^+ a(S-^+ by^ = ljp, (i)

where a, 13, 7, m are the integers to be determined. As the form

of the first member of this equation defines a set of numbers

which do not form a domain with respect to multiplication,

we shall naturally seek to extend the set in such way that

the resulting class of integers do form a domain with respect

to multipUcation. For this purpose let us replace a-, ^~, 7^

by X, y, u respectively and adjoin the new variable v so as

to give rise to the class of numbers defined by the form

x~+ ay-+ h u- -\-abv^.

This class forms a domain with respect to multiplication, as

we have already seen.

Concerning this extension let us observe that the set of

numbers a^^a^'^-\-by'^ have been extended simultaneously in

two different ways. One way is by the generalization of vari-

ables already present; the other is by the adjunction of a new

variable. We have here, then, an example of two methods

of extending a set of numbers. These methods we shall find

of frequent use and great importance in the theory of Diophan-

tine equations.

Let us return now to Eq. (i) and consider it in connection

with the group (7) of equations in the preceding section. By
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means of the first equation in that group (with v taken equal

to zero) we see that (i) will be satisfied if

a-=x- — ay- — ou-,

^ = 2xy,

^'~ = 2HX.

(2)

Here x, y, u are integers to be so restricted that (2) shall be

satisfied.

From the last equation in group (7), already referred to,

we see that the second equation in (2) w^ll be satisfied if

a^x{- — ayr — bui-,

x = xi~-{-ayr-{-bui-,

y=2Xiyi,

U = 2UiXi.

Then the third and fourth equations in (2) become

l3'-
= 4Xiyi{xi^-\-ayr-\-bui-),

y~ = 4UiXi(xr-\-ayr-\-bui-).

These can be satisfied if we have

(3)

:v*i=A'2~, yi=y2~, Ui

X2^+ ay2^ -\-bu2^ = p-.

M2-,

(4)

(5)

The last equation in (5) is of the same form as (i). Hence

if we know a single solution of (i), we can by its means satisfy

the last equation in (5). Then from the remaining Eqs. (5)

and Eqs. (2), (3), (4), we can determine values of a, (3, 7, ^u.

Therefore, from a single solution of (i) we can find a second

solution; from this one a third can be obtained; from the

third a fourth can be gotten; and so on. Thus we have at

hand a means for determining in general an infinite number
of solutions of (i) as soon as a single solution is known.

As an illustration of this method let us consider the special

equation in which a = b = 2, namely, the equation,
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A particular solution is afforded by the relation

3^+ 2- 4-^+ 2- 2-^ = 252.

Associating this with Eq. (5), we see that we may take 0:2 = 3,

y2 = 4, U2 = 2, p — 2^. Then we have ^1=9, ^'1 = 16, wi=4;

whence from (3) we have q:=— 463, x = 625, 3' = 288, u = 'j2.

Thence from (2) we see that

01 = 463, /3 = 6oo, 7 = 300, ^1 = 566,881

is a second solution of the equation. From this a third may
be obtained in a similar manner; and so on ad infinitum.

Let us now consider the equation

a2+a/32+&7-=M-'. (6)

Again making use of Eqs. (7) of the preceding section we see

that (6) will be satisfied if

fj2
= X-+ ay'^+ bn-+ a hv~

,

a = x^ — ay^ — bii^ -\-abv-,

(3 = 2xy— 2buv,

y = 2UX-\-2avy.

(7)

It is only the first equation of this set which puts a condition

on the integers x, y, u, v. That equation will be satisfied if

p, = xi^-\-ayr-\-bur-\-abvi-,

x = xi^ — ayr — bur+abvr,

y = 2xiyx-2buivi,

u = 2UiXi-\-2aviyi,

v — o.

(8)

Here Xi, yi, u\, Vi are arbitrary integers. Hence Eqs. (7)

and (8) afford a four-parameter solution of Eq. (6).

Finally, let us consider the equation

There is often a measure of choice at our disposal concerning

the set of numbers which we shall extend to form a domain
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with respect to multiplication. Here we may extend the set

determined by either of the following forms:

We shall employ the latter alone.

Proceeding as in the previous cases, we may write

a- = x~ -\-hy~ — ail? J

-

ix = x- — by"-\-au",

V = 2xy,

jS- = 2UX.

To satisfy the first of these equations it is sufficient to take

a = x{--\-hyr — aui~,

X = xi~ — byr -\-aur

,

y^2Xiyi,

U= 2U\X\.

(lo)

(ll)

Then from the last equation in (lo) we have the further re-

striction:

^" = 4U1X1 (xr - byr+aur)

.

This can be satisfied if we write

wi=W2*', xi=a:2";

X2^-\-au2'^ — byr = p-.
(12)

But this last equation is of the same form as (9). Hence
from a single solution of (9) we have integers satisfying the

last equation in (12). From these we can determine a second

solution of (9) by means of Eqs. (10), (11), (12). From this

a third can be found; and so on.

As a special case of (9) consider the equation

which has a solution afforded by the relation

54+ 54 = 3^2+ 202.
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Comparing with (12) and remembering that we now have

a = b = i, we see that we may take a;2 = 6, ^2 = 5, yi = 2o (or

yi might be taken equal to 39 and thus another result be finally

obtained). Then .^1=36, ^1 = 25. Thence from (11) one may
determine x, y, u and thence from (10) values of a, 13, m, v may
be found which will satisfy the relation a^ -'r

^^ = iP -\- v-
. From

this second solution a third may be found; and so on ad

infinitum.

Many other equations of the sort treated in this section

are amenable to the same methods. Some of these are indicated

in the general exercises at the close of this chapter.

EXERCISES

1. Show how to find an infinite number of integral solutions of the equation

from a single given integral solution. Find several values of a for which integral

solutions certainly exist.

2. Obtain a two-parameter integral solution of the equation

a'+al3-—iJ.'^.

3. Show how to find a two-parameter integral solution of the equation

for any given positive integral value of n.

§ 12. On the Extension of a Set of Numbers so as to

Form a Multiplicative Domain

In the preceding sections of this chapter we have instances

illustrating a matter of great importance in Diophantine anal-

ysis. It is intimately connected with the fact that certain

classes of integers form a domain with respect to multiphca-

tion. We have seen how the properties of such a domain

may be employed to obtain solutions of a considerable class

of equations. Moreover, we have found it profitable to gen-

eralize a set of integers introduced by a given equation so that

the resulting set shall form a domain, whereas the original set

did not. In the first place we extended the given set by the
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adjunction of a new variable; this method can evidently be

generalized, when convenient, by the introduction of two or

more variables. In the second place we extended the given

set by the generalization of variables already present. These

are two widely useful methods of extension which may be

employed either separately or simultaneously. They serve to

unify and connect many problems which otherwdse would

appear unrelated.

If a given equation is put forward for consideration it is

usually a matter of ingenuity to determine a suitable method

of extension so as to give rise to a domain with respect to

multiplication; and it is not at all improbable that no method
will be apparent. In fact, it is easy to propose problems which

are not yet amenable to solution either by this or by other

means. There are, however, certain general classes of equations

to which the method will apply, and these will be indicated

as we proceed.

But the chief value of the method of extension does not

consist so much in its use for the solution of equations pro-

posed at random, as in its use for the arrangement of large and

interesting classes of problems in an order in which they are

amenable to attack and for suggesting a uniform procedure

by which they may be investigated. One cannot fail to see

the value of this in accomplishing the desirable end of building

up a considerable body of connected doctrine.

There is one general case in which the extension by the

adjunction of new variables is possible and to which we wish

to direct attention. We begin with an illustration.

Suppose that a problem gives rise to the set of numbers

x^-\-y^. They do not form a domain with respect to multi-

pHcation. Let us consider the product

P{x, y, s) = (x+ v+s)(a;-fwy+ o;-s)(.v+ co-y-}-coz), (i)

where w and w- are the imaginary cube roots of unity. By
multiplication we find that

P(x, y, z) =x^+f -f s3 _ .xyz. (2)
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Hence P{x, y, o) =x^+y'^. Hence the set of numbers P{x, y, z)

is an extension of the set x^+y"^.

Now
{x-\-oiy-\- (ji^z) (w+ cot;+ oru^ = r+ co5+ (x>H, (3)

where
r = xu-\-yw-\-zVj

s = xv-\-yu-\-zw, \ (4)

t = x'w-{-yv-\-zu.

Hence
P{x, y, z)'P{u, V, w) =P(r, s, t).

Therefore, the numbers P{x, y, z) form a domain with respect

to multiplication.

By interchanging the role of v and w we have also

P{x, y, z)-P{u, V, w) =P{ri, si, h), (5)

where
ri=xu-{-yv-\-zw, 1

Si=xw-\-yu-\-zv, > (6)

ti=xv+yw-\-zu. J

Let us consider more generally the set of numbers

Xi*-\-aiXi°~^X2-'ra2Xi^~^X2"-\-- . .-{a„^iXiX2"~^-\-anX2", (7)

where ai, ^2, • • ., <z« are given quantities. The method of

extending this set so that the resulting set shall form a domain

with respect to multiplication grows out of a remark due to

Lagrange {GLuvres, Vol. VII, pp. 164-179), though Lagrange

seems nowhere to have utilized it in connection with Dio-

phantine problems. A partial use of it has been made by

Legendre {Theorie des 7iomhres, Vol. II, 3d edition, pp. 134-141);

but its consequences seem nowhere to have been systematically

developed.

Let ai, a2, . . ., an be the roots of the equation

r-aif^-'^a.t"-'-. . .+ (-i)'*-\7„_i/+ (-i)''a„ = o. (8)

Form the product

P(x) = S (^1 +«tX2 -^ai^X3+ . . . +ai"- 'xn) . (9)
i=l
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This is a symmetric function of the roots of Eq. (8), whence

we see readily that it may be written as a homogeneous poly-

nomial of the nth. degree in the quantities ii^i, 0:2, . • , Xn with

coefficients which are polynomials in ai, a2, . . ., On, the latter

having integral coefficients. For X3=Xi = . . . = Xn = o, it is

clear that P(x) is identical with the expression in (7). Hence

the set of numbers (7) is extended into the set (9) by the ad-

junction of the new variables X3, x^, . . ., Xn.

It remains to show that the numbers P{x) form a domain

with respect to multipHcation. Let P(x) and P{y) be two

numbers of the form (9). Then we have

P(x)'Piy) =

n (xi+aiX2-\-. . .-\-ai'*~^Xn){yi+aty2-^. . .+«<"" V»)- (10)

Let us multiply together the two quantities

Xi-\-atX2-\-- .-fai"" Xn, yi+aiV2+ -

and in the product repeatedly replace a,""^*, k

at =aiai —a2cn -\-a?,ai —

until the result is reduced to the form

Si-|-afS2+arS3+ . . .+«{"" S»,

where zi, 22, . . ., Sn are determinate polynomials m X\, . . .,

Xn, yi, . ' -, yn- Then it is obvious that we have

P(x)-P(y)^P(z); (11)

that is, the product of two numbers of the given form is itself

of the same form. Hence the numbers P{x) form a domain

with respect to multipHcation.

It is obvious that one can obtain immediately an w-param-

eter solution of the equation

Pix)=l\

where k is any positive integer. For this purpose it is suffi-

cient to write l = P{z) and to determine xi, . . ., Xn from the

relation

{P{z)\' = Pix).

+
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Again, from a single solution of the equation

. P(x)=o,

an w-parameter solution may be obtained by means of Eq.

(ii), yi, . . ., yn being taken as arbitrary and the quantities

Zi, . . ., Zn being the new values of xi, . . ., Xn.

In a similar manner, from a single solution of the equation

P(x) = i. (12)

others may be found. From a solution of Eq. (12) and a

solution of the equation

P{x)^7n,

other solutions of the latter may obviously be obtained.

GENERAL EXERCISES

1. li p, q, r satisfy the relations

1,1,1
p+q+r = i, -+-+-=0,

p q r

show that

a^+b^+c^^(pa+qb+rc)-+{qa+rb+pc)-+ira+pb+qcy.
(Davis, 191 2.)

2. Obtain solutions of the equation

{x-+y~+z'^){xi^+yi'^+zr)= ti^+v'^+iv'^.

(Catalan, 1893.)

3. By means of the identity

s(ai''+d2-+. . .+a-n-i— a»-)-+(2aia«)-+(2a2a«)-+. • .+ (2fln-ia«)2

show how to find any number of square numbers whose sum is a square.

(Martin, 1896.)

4 Show how to write the square of a sum of n squares as a sum of n squares.

(Moureaux, 1894.)

5 , By means of the identities

{i+a+b+ab+a^+¥y= {i+ay{a+by+{i+by-{a+by-+ii+a+b-aby

= aHa+b+iy-+bHa+b+iy+{a+b+iy+{a+b+aby,

show how to separate certain squares into a sum of three and of four squares.

(Avillez, 1897.)

6.* Show how to find other solutions of the system

x-—by-=ti', x--\-by-=v-,

when a single solution is known. Prove that a non-trivial solution does not exist

when & is a square number. Show further that a necessary and sufficient condi-

tion for the existence of an integral solution is that integers tii, «, p exist, such

that

bp-=i)U!{)}i+>!){»i—n). (Lucas, 1876.)
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7.* Discuss the solution of the Diophantine sj'^stem

x-+xy-\-2y-=u-, x-—.xy—2y-=v-. (Lucas, 1876.)

8.* Show how to find a second solution of the system

when a single solution is known; thence find the general solution of the system.

(Lucas, 1877; Pepin, 1S79.)

9.* Show that the only integral solution of the system

2V~— n-=w^, 2V--\-n-=;^z-,

is the trivial one in which each of the numbers », v, w, z is equal to ±1.

(Lucas, 1877.)

10. Let p, r. s be three numbers satisfying the relation

r'^+ai''S-+ bs'^= p~.

Show that the equation

x*+ax-y-+by*= z-

has the further solution

x=r'>—bs\ y=2prs, z= p^—(a-—4b)r*s*.

Derive this result by a direct use of the method of extension by generalization

of variables. (Lebesgue, 1853.)

II.* Prove that the equation

x4-2V = i

is impossible in positive integers x, y, m. (Thue, 1903.)

12.* Determine the values of m for which the equation

x*-\-mx-y'^-\-y*—z'^

has non-trivial solutions. (Werebriissov, 1908.)

13.1 Determine the integral values of m and n for which the equation

x*-{-mx-y--\-ny^= z-

has non-trivial solutions.

i4.t Investigate further the problem of solving the equation

for integral values of h greater than 2.

15.1 Investigate the problem of solving the system

for particular values of k and /. (Compare Exs. 4 and 6 in § 10.)

16. t Develop in further detail the theory of the equation

(See special cases of this equation in Chapter IV.)

i7.t Investigate the problem of solving the equation

x*+ay^+bz*=t^

for integral values of k greater than 2. In particular, consider the case k=^.
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i8.t Investigate the problem of solving the equation

x*+ay*—ii^+av'^.

19. t Develop in further detail the theory of the equation

20. t Investigate the problem of solving the equation

21. t Let a, b, k be given integers, k being positive. Investigate the prop-

erties of the integer tn such that the equation
».

x--\-axy-\-by-= mt

shall possess integral solutions and find these solutions when they exist. In

particular, treat the cases k= 2, ^=3.

22. t Develop a similar theory for each of the following equations:

x^+ay-+bz~=mt*',

x'^+ay*+bz'^=ml*',

x^-\-ay^= m{ii--{-av-),

x^+ay^=mW+bv^).



CHAPTER III

EQUATIONS OF THE THIRD DEGREE

§13. On the Equation kx'^-\-aT^y-\-hxy^-\-cy^ = f

We shall now consider the problem of finding solutions of

the equation

a3+a.v2v+ iA72+cv=5 =/2^ (i)

where a, b, c are rational numbers. By our general method

(in §12) of extending the set of numbers defined by the first

member we are led to consider the function

h{a, H, 7) = n («+ P(/3+ pr'7), (2)

where pi, p2, ps are the roots of the equation

p=^-ap2+^p-c = o. (3)

It is obvious that h{x, y, o) =x^-\-ax'-y-{-bxy^-]-cy^.

Performing the requisite multiphcations, we have

hia, 13, 7) =a^-]-aa^^+ba^--]-c^^-\-ia^- 2b)ah+ {b- - 2ac)(xy-

+ac^^+ k/37' +C273+ {ab - 3c)a(3y. (4)

Since pi satisfies Eq. (3), it is easy to see that we have a rela-

tion of the form

{a+ pi/3+ pr7) (w+ piV+ prw) = r+ pi5+ prt ,

where r, s, t are rational. On computing the values of r, s, t,

we are led to the following result:

I. // r, s, t have the values

r = au-{-cyv-\-cl3u'-\-ac'YW,

s=^pu-\-av — byv — b^w-\-cyw— abyu\
\ (s)

t =yu+ ^v -{-aw+ ayv+a^w— byw+ a^yw,
.

then

h{a, /3, 7) • h{u, V, w) = h{r, s, t). (6)

55
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From this formula we see readily that

l//(a, ^, y)\-^h{a-+ 2ci3y-j-acy'^, 2a^- 2b^y-\-cy^-aby^,

By means of the last relation we are able to find a two-

parameter solution of Eq. (i). The latter we may write in

the form Ji{x, y, o) =f. Comparing this 'with Eq. (7) we see

that a solution is afforded by the values

t = h{a,0,y),

x = a^-\-2C0y+acy~, (8)

y = 2a^ — 2hfiy-\-cy" — ahy~,}

provided that a, |8, 7 are connected by the relation

2a7 +|3-+ 2(7/37 — 67^ +a-7" = o. (9)

Into the last relation a enters linearly. It is therefore a rational

function of /S and 7 with rational coefiicients. Hence,

II. A two-parameter rational solution of (i) is afforded by

the set (8) wJiere ^ and 7 are arbitrary rational numbers (except

that 7 must in general be different from zero) and a is determined

by Eq. (9).

If we set 7 = 2W, ^ = 2m7i, where m and n are integers, we

are led immediately to the following result:

III. // a, b, c are integers, then a two-parameter integral

solution of (i) is afforded by the values

t = h{a, 2m n, 2m),

x=a~-{-8cm-n-\-4acm^,

y = 4am — Sbm-n -\-4cm'^ — 4abm,^

where

a = bm — a-m — 2amn — mn^,

m and n being arbitrary integers.

It is obvious that these results may be applied readily to

the solution of the equation

kx^+ axry+ bxy- -\-cy^ = t-, k^o; (10)

for, if this equation is multiphed through by Jz'-^ and kx is replaced

by X, the resulting equation is of the form of (i).
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The reader may readily supply numerical illustrations of

these results.

A method of finding particular solutions of Eq. (lo) is

due to Fermat. It apphes only when ^ or c is a square. Let
us suppose that ^ is a square. Write the equation in the

form

d~x^+ ax^y -\-bxy^-hcy^=t^. ( ii

)

Take x = i and set

t^d-\--v.
2d

Then we have

This gives

{'^v,^^<'-i)y'^H'^T,^

-S-*'-
From this value of y we have a value of /, and hence a solution

of(ii).

§ 14. On the Equation kx^-\-ax-y-\-bxy-+cy^ = fi

If we set

ii=a^-\- 2C0y+ acy^,

v=2al3— 2b(3y-\-cy^ — aby^, (i)

w = 2ay-\-^^-\-2aPy — by'^-\-a^y'-,
,

then from Eqs. (5), (6), (7) of the preceding section we see

that

\h(a,0,yW = h(p,a,T), (2)

where

p = au-\-cyv-]-cl3w-\-acyu',

<j = (3ii-\-av — byv — b(3-Li'-\-cy'Li' — abyw, (3)

T = yu-\-^v-haw-{-ayv-\-al3w — by'w-\-a^y'W.
.

For a solution of the equation

x^+ ax-y+ bx}'^+ cy^ = fi^ (4)

it is obviously sufficient to take

t = h{a,^,y), x = p, y = (T, r= o. (5)
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Hence the equation t = o puts the necessary restriction on the

otherwise arbitrary quantities a, /3, 7.

Since r is the crucial quantity, let us write out its value

in terms of a, /S, 7. We have

T = 301-7

+

2)Ot^^+ 3 (^^~ 5)0:7^+ 2 (a^+3a — ah)a^y -\- a^^

+3(a^'-6)^2^+(a3-4ai+3c)^7"+ (a^-3«'^+ 2ac+62)73. (6)

From any solution of the equation t = o we have a solution

of (4).

In order that the equation t — o shall determine a rational

value of a, it is obviously necessary and sufhcient that the

expression

l3,/32+3(a2-6)72+ 2(a3+3a-a&)/37l--i27lai33

shall be equal to a square. If we call this m-, we have

9/3'*+ 1 2(a3+ 2a -06)1337

-{-i2{a^-\rZa^ — a^ — ^cfih+ah+ah" — ^c)fiy'^

+ {-a'^+6a'^b-b^-8ac)y^^m'^. (7)

A method of finding in general an infinite number of solutions

of this equation is given in § 17 of the following chapter. The

work done here consists essentially in reducing the problem

of solving Eq. (4) to that of solving Eq. (7).

A particular solution of Eq. (7) is obvious. It is gotten

by setting 7=0. This gives rise to the following solution of (4)

:

t = 2a^ — gab-{-2'jc,

x = 27c— a^,

y = ga^ — 2'jb.

But this particular solution is more readily obtained by the

method of Fermat described below.

The equation
k^x^-\-ax^y-^bxy^-\-cy^ = fi, (8)

can be readily reduced to the form of (4). It is sufficient to

multiply the equation through by k^ and replace x by k^x.

Hence the previously developed theory is appHcable to Eq. (8).
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Another method of effecting a reduction similar to that

above is the following (see Schaewen, Jahreshericht der Deutschen

Mathematikcr-Vereinigung,\'o\. XVIII, pp. 7-14): In the gen-

eral equation (8) replace x by

Then we have a result which may be written

kh-^-hpxy^+qy^ = fi. (9)

This equation may be put in the form

(/- kx) (/2+ kxt+ k-X^) = >'2 (px+ 93')

.

The last equation will be satisfied if one writes

m{t— kx) =ny,

n{f+ kxt+ k-x'^) =m(pxy+ qy'^)

,

where m and n are arbitrary quantities. If we put

t— kx = —y,m

the first of these equations is satisfied while the second becomes

T^k^mhiX" — ipm'^ — T,kmn^)xy— {qnfi — n^)y^ = o.

If we denote the discriminant of this equation by nirp- we see

that it, and hence Eq. (g), has a rational solution which may
be immediately derived as soon as one knows rational numbers

7n, n, p, satisfying the equation

p-m^ -\- i2k^qm^it — 6kpm'-n- — ;i,k'-n^ = p~. (10)

Thus we have reduced the problem of solving Eq. (9) to that

of solving Eq. (10).

There is an interesting method by which particular solutions

of Eq. (4), and, in fact, of the more general equation

yl.v3+5.v2y+Cv/+W = /^ (11)

may often be obtained (see Schaewen, /. c). It depends

essentially on writing Eq. (11) in the form

pS_^Q=^l3^ (11 bis)
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where P is a linear expression in x and y and ^ is a polynomial

which has at least one rational linear factor. A convenient

pair of values of x and y can be chosen so as to reduce such

a linear factor to zero. Then t can readily be found. Thus

a particular solution of (ii) is obtained. The apphcability

of this method depends on whether or not Eq. (ii) may con-

veniently be thrown into the form (ii ^^^).

As an example, we take the equation

r'^ — 5:^-3; — 6xv-+8v^ = /^. (12)

It may be written in each of five forms as follows:

%y^^x{x+y) [x- 6y) = fi,

x^ — {x-{- 23') (5:^— 4y)y = fi,

(- \3 ^,2

x-^y) -— {i,8'jx-T,4Ty)=t^,

I 27

{x-\- 2yY — xy{\\x-\-'^'^y) =t^,

/2y--j +—(gx— 52y)=f.

These give rise to the following pairs of values of x and y, each

of which affords a solution of Eq. (12), namely: x=i, y= — i;

x = 6, y = i; x = 2, ,v=-i; x = 4, y = s; :^ = 34i, ^' = 387;

-T = 18, y = — 1 1 ; .T = 5 2 , y = 9.

A special case of this method is due to Fermat. Suppose

that A =a^. Then for P we may take

P = ax-\—-y.
3a-

Then Q has the factor y^ and hence a linear factor. Thus

one has a solution in all cases when yl is a cube. Similarly

there is a solution when T is a cube. It must be observed that

for special equations this method may lead only to a trivial

solution of the given equation. This is true in the case of an

equation in the form x^-\-cy^ = fi.
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It may be remarked that the problem of finding integral

solutions of Eq. (ii) is obviously equivalent to that of finding

rational solutions of the equation

Ax^+Bx^+Cx+D = P; (13)

for (11) is reduced to (13) by dividing it through by y^ and

in the resulting equation writing x, t for x/y, t/y, respectively.

It is in this latter form that the problem was investigated by

Fermat and Euler.

Fermat observed that from a single solution of Eq. (13)

others can usually be obtained. The method is as follows:

Let x =m afford a rational solution of (13) and let'/ = .? be the

corresponding value of /. Then in (13) replace x by ^+ m.

The equation takes the form

A^^-\-'Be+C^^s^ = t\ (14)

Now if we write

we can readily determine a rational value of |, in general

different from zero, such that Eq. (14) is satisfied. Adding

m to this value of ^, we have a new value of x which affords

a solution of (13). Starting from this new value of x we can

usually determine a third; and so .on indefmitely. For certain

particular equations the method may fail to lead to new solu-

tions. This will be the case when the solution obtained for

(14) is ^=^0, i = s.

As an illustrative example, let us consider the equation

This has the solution .v= i, / = i. Then write a:= ^-f i, whence

the equation takes the form

Putting t=i — 2^ in the last equation and solving the resulting

equation for ^ we have ^ = 14/9. Thence, as a second solution

of our given equation, we have .r = 23/9, /= —19/9. From this

second solution a third may be found; and so on indefinitely.
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For an investigation concerning the existence of a solution

of Eq. (13), see Haentzschel, Jahrcshcricht der Deutschen Mathe-

matiker-Vereinigung, Vol. XXII, pp. 319-329,

§ 15. On the Equation

^3 _|_^3 _|_23 _ ^y.y^ = 2/3 _|_ j,3 _j_.j,,3 _ ^i^jj^f

Probably the most elegant particular equations of the

third degree are the following:

x^-\-'f = ifi, (i)

^3 _|_ ^,3 ^ 2/3 _|_ j,3
_ ^ 2 )

That the former is impossible in integers different from zero

will be shown in the next section. The general solution of the

latter we shall derive in this section. It is convenient to con-

sider first the more general equation

^ +>^ +2^ — 2)^yz = ifi+S-^ -\-u^ — 2,uvw. (3)

This equation reduces to (2) on putting z = w = o. Moreover,

it is the equation to which one is led on extending each of the

two sets of integers x^-\-y^, u^-{-v^ so as to arrive at a multi-

plicative domain, as one sees by reference to § 12. (It may
be observed that the problem of finding integral solutions

of (2) and (3) and that of finding rational solutions are essentially

the same.)

Let us denote the first member of (3) by P(x, y, z) as in

§ 12. Then from Eqs. (3) to (6) in § 12 we see that

P{r, 5, t)-P{m, n, p) =P{x, y, z)=P{u, v, w),

where
x = mr-\-nt-\-ps,

y^7ns+nr-\-pt, (4)

z = mt-{-7is-\-pr,
^

and
u = mr~\-?is-]-pt

v = mt+ nr-\-ps, \
. (5)

w = ms-\-nt-\rpr.
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Eqs. (4) and (5) afford a six-parameter solution of (3). This

solution, so readily obtained, unfortunately lacks generaKty.

We proceed as follows to find a more general solution:

Write Eq. (3) in the form

(x+ >'+ 2) (x^+ y^+ S" — xy — yz— zx)

= (m+ vj+w) {U"+ V^+ "dP'— uv— vw— wu)

.

We may exclude as trivial the cases in which each member
is equal to zero; for all such solutions are obtained readily by

means of linear equations. (Compare the factorization of

P{x, y, s) in § 12.) Then we may write

x+y-\-z _u^-\-v^-\-u'^ — tiv—vw—wu
u+v-\-w x^ -\-y~ -{-z^— xy— yz— zx

'

Now put
u = w-}-a, v = 'w-\-0, x = z4-7. y = z-\-8. (6)

Then we have
x+y-{-z _ a--al3-\-^-

u-\-v-\-w 7- — 75+52' (7)

Multiplying both numerator and denominator of the fraction

in the second member of (7) by the denominator we may
write the result in the form

X+V+ 3 Q;i--ai/3i+i3i2 ., o ,a9
u+v-i-w (7- -75 +5-)- '

where 02 and ^2 are rational numbers, when u, v, w, x, y, z

are rational numbers. Compare formula (2) in § 7.

If we write

a2-r/32 , 0:2 — 182a= , b= ,

2 2

then the preceding equation takes the form

x-\-y+z = {a'-\-^b''){u-\-v-\-w). (8)

Hence, for every rational solution x, y, z, u, v, w of Eq. (3)

rational numbers a and h exist such that Eq. (8) is satisfied.

From Eqs. (7) and (8) we have

(a-+3&-)(7--75+52)=a;2-a/3+ ^2.
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This relation may be put in the form

'^3 + 3

(lo)

(9)

By means of the relation

we see that Eq. (9) is satisfied if we have

(7(7-5)- &(7+ 5)=a-i3.

From the homogeneous character of Eq. (3) it follows that

if each of the numbers x, y, z, u, v, w in a particular rational

solution is divided or multiplied by a given rational number,

the resulting numbers form a rational solution. Hence without

loss of generahty we may take u-hv-\-iv equal to unity. This

we do. Then, in view of (7), we have

ti-\-v-\-w= I,

x-\-y+z = a--\-2,b'^;

and thence from (6),

7+ 5 = a2+3&2_3..
(11)

Eqs. (10) and (11) may now be solved for a, 13, 7, 5. If the

results are put in Eq. (6), we have

6b
^"'

y=

u =

{a-\-Sb){a^+Sb~-sz) - i+3te' ^^
6b

^^'

(a'-h3b'')(a'-^3b~-3^)^ia+3b)-Ma^3b)
6b

\ (12)

ia'~+ Sb^){a'-+3b-'-3z)-{a-^b)+Mv(a-3b)
, ^^,

1) = - —— ^= h^t-i

6b J

while z and w are arbitrary. This affords a rational solution

of (3) depending upon four rational parameters.
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Setting z = 'ii' = o and multiplying the resulting values of

X, y, u, V by 6b, we are led to the following solution of Eq. (2)

:

>- = (a+ 3&)(a2+3^2)_i^
(13)

This solution is due to Euler and Binet; they obtained it by

a different method.

We shall now show that formulae (13) afford the general

solution of Eq. (2) (exclusive of trivial solutions) except for

an arbitrary constant k multiplying the second member of

each equation in (13). In doing this it is convenient, first

of all, to transform the solution in the following manner: Put

p-\-a , a—p p--\-pa-\-(T^
a= , b=—— , 11 = .

(This transformation is employed by Fujiwara in Arch. Math.

Phys. (3) 19 (1912): 369. See other papers referred to in

this note.) On replacing .t, a', u, v by m~ times their former

values, we may write the resulting solution in the form

:

x= —up-\-m-, y = n(T — m'-, n^ma — n-. v^ —mp-\-7i^. (14)

Here p, o-, m, n are arbitrary parameters except for the relation

p2+ p(r+ (r- = 3w«. (15)

To prove that (14) affords the general solution of (2) it is

obviously sufficient to show how to determine p. a. m, n so

as to satisfy Eqs. (14) and (15) when x, y, u, v, in order, are

replaced by a suitable multiple of any given set of values

satisfying (2). For this purpose we may proceed thus (see

Schwering, Arch. Math. Phys. (3) 2 (1902): 2S1):

From (14) we have

x-\-y = n((T— p), .u-\-v = ni{(T— p);

whence
m _u-\-v

n x-\-y'
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Therefore, we may write

in = \{u+v), n = \(x-\-y). (i6)

Now again from (14) we have

nv —mx = ffi — m^.

If in this equation we substitute the values of w, n from Eq.

(16), we have

^ _ v{x-\-y) — xju+v)

{x-\-yY — {u+vy

Since the numerator and denominator here are homogeneous,

the former of degree 2 and the latter of degree 3, it is obvious

that this equation will be satisfied by X=i, provided that

x, y, u, V are replaced by tx, ry, tu, tv, respectively, and r is

suitably determined. Replacing them by these same multiples

in Eqs. (14) and (16) we see that (16) affords the values of

m and n and that (14) affords the values of p and a.

It remains to show that Eq. (15) is satisfied. This we

do by substituting in Eq. (2) the values of x, y, u, v taken

from (14). Thus we have

(— np-\-m^y^+ {no- — m^y+ ( — ;»o-+ «-)-^+ {mp — n^Y = o-

Hence

{m^ — 1l^)(p — <r) ( fT -\- pa -{-
a- — T,m7l) = O.

Therefore Eq. (15) o" one of the relations m = n, p^a is sat-

isfied, li m = n then x = v, y = u. li p = a, then x= —y, u= —v.

Hence, except in the case of trivial solutions, Eq. (15) is sat-

isfied. Therefore, Eqs. (14), with the condition (15), afford

the general solution of (2). Likewise Eqs. (13) afford the

general solution of (2). In each case the elements of the

solution given are all to be multiplied by an arbitrary con-

stant k.

If in (13) we set a = o, b = h, and multiply the resulting

values of x, y, u, v by 16, we are led to the relation

343+ 23 = 153+333,

as a particular case of the sum of two cubes equal to the sum

of two other cubes.
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§ i6. Impossibility of the Equation .r^+ v^ = 2'"s^

We shall first consider the foregoing equation for the case

ni = o; it then has the form

x^-\-y^ = z^. (i)

In order to prove that this equation is impossible in integers

X, y, 2, all of which are different from zero, we shall have need

of some lemmas similar to those in § lo. We shall now state

them and indicate the means of proof.

Lemma I. // a number is expressible in the form a- +3/32,

and if the quotient {a^ -\- ^(3-)/ {a^ -\- 7^b~) is an integer m, where

a, /3, a, b are integers and a^-\-T,b^ is a prime number, then m is

expressible in the form 7^+3 5^, where 7 and 8 are integers.

Lemma II. Every prime number of the form 6n-{-i can be

represented in one and in only one way in the form (1^+362 where

a and b are integers. No prime number of the form 6n—i is

a divisor of a number of the form a'^+^b'^ where a and b are rel-

atively prime.

Lemma III. Let p be a prime number of the form 6w+i
and write p = a^-}-^b-, where a and b are integers. Let m be any

integer such that pm=a~-^7,^-, where a and j3 are integers. Then

there exists a representation of m as a sum of two integral squares,

/aa±^b0\- /abT_a(3\-
'-=Ri^^ +3r^f^ , (2)

such that the representation a^-]-T,0^ of pm is obtained from the

foregoing representations of p and m by multiplication in ac-

cordance with the formula

{a'^-Zh'){c-'+id'') = {ac+2>bd)~+ i{ad-bcy.

Corollary. If h is a composite number all of whose prime

factors are of the form 6«+ i and if we write h = hxh2, where

hi and h2 are positive integers, then every representation of h in

the form a^-{-2>b'^ is obtained by taking every representation of

h\ and ho and multiplying these expressions in accordance with

the formula

ia^-i-3b'-){c^-^2>d^) = {ac±2>bdy'+ 7,(ad^bcy'.
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The proof of lemma I is obtained by an obvious modification

of that of lemma I in § lo. The proof of lemma II is a close

parallel to that of lemma II in § lo; in this case, however,

one starts from the fact that— 3 is a quadratic residue of

primes of the form 6w+i and of no other odd primes. The

proof of lemma III is like that of lemma III in § 10. The

reader can readily supply the necessary argumentation in all

cases.

Our immediate use of these lemmas is in finding the general

solution of the equation

p^~-\-M' = s\ (3)

where p and q are relatively prime integers and 5 is odd. It

is clear that s must have the form

5 = ^2 ^3^2, (4)

where / and u are integers. Writing {f+7^u~)^ in the form

p2j^^q2 \^y jneans of a repeated use of the last formula in the

foregoing corollary, we have

p = t^-gtu\ q = zu{fi-u^). (5)

Eqs. (4) and (5) give all the integral solutions of (3) subject

to the condition that p and q are relatively prime and 5 is odd.

Let us now return to Eq. (i). Our method of proof (see

Euler, Opera Omnia, series i, Vol. I, pp. 484-489) is to assume

that Eq. (i) is satisfied by a set of numbers x, y, s, all of which

are different from zero, and to prove that we are then led

to a contradiction. Let d be the greatest common divisor of

any two of these numbers. It is then a divisor of the third.

Eq. (i) may then be divided through by (P and a new equation

of the same form obtained in which the resulting x, y, z are

prim.e each to each. Hence, without loss of generality, we

may assume that Eq. (i) itself is satisfied by integers x, y, z

which are prime each to each; and this we do. Then it is

easy to see that two of the numbers x, y, z are odd and the

other one even. We shall assume that x and y are odd. This

assumption involves no loss of generality, since if one of these

numbers, say x, is even, then the other, in this case y, may be
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transposed to the second member so that we have x^=z^-{-{—y)^,

an equation of the same form as (i), in which the two numbers

in the same member are both odd.

Let us now write

x-{-y = 2p, x— y = 2q.

Then x = p-{-q, y = p — q, so that p and q are relatively prime

integers, one of them being odd and the other even. Sub-

stituting in (i), we have

From this equation it is clear that p is even, since p^-^sq" is

odd; hence q is odd. Since p and q are relatively prime it

follows that p and ^^+35- have the greatest common divisor

I or 3. We treat these two cases separately.

In the first place suppose that p and p"+^q- have the

greatest common divisor i. Then p is not divisible by 3.

Then from Eq. (6) we have

2p = r^, p^-+^q^ = s\ (7)

We have seen above that the last equation can be satisfied

only when p and q have the values given in (5). Since q is

odd it follows from the last equation in (5) that 11 is odd and

/ is even. From the first equation in (5) we see that t is not

divisible by 3. Moreover, t and u are relatively prime, since

the same is true of p and q. From the two values of p above

we have the relation

(2/)(/+3«)(^-3«)=r'^-

It is clear that the three factors in the first member are prime

each to each. Hence each of them is a cube. Writing them

in order equal to the cubes ju^, p-^, o-^, we have

It is easy to verify that the numbers p, a are less in absolute

value than the numbers .r, y with which we set out. More-

over, both of them are odd. Furthermore, ix is dift'erent from

zero.

Let us now consider the case in which p and p'+^iT have
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the greatest common divisor 3. Then write /' = 37r. Then
from Eq. (6) we have

67r = 9r3, 97r- +3(^2 = 353;

or

Here we see that tt is even. Hence q is odd. In view of (5)

as the general sohition of (3) we sec that q and tt have the

forms

q = fi — gtu'-^, 7r = 3w(/2 — zr).

Since tt is even it follows from the last equation that u is even

and / is odd. From the two values of x we have

{2u)(t-^u)(t-u)^r\

It is clear that the three factors in the first member of this

equation are prime each to each. From this we are led as

before to an equation of the form (8) with the same prop-

erties as in the preceding case.

Therefore, starting with an equation x^-\-y^ = z^ in which

X, y, z are all different from zero and are prime each to each

and X and y are odd, we are led to another equation

xi^-\-yi^=zi^ of the same sort, in which xi, y\ arc less in

absolute value than x, y. Starting from the last equation,

we can proceed as before to an equation X'^-\-y'i'^zi' with

the same properties as in the preceding case, X2, y^ being less

in absolute value than x\, y\\ and so on. But such a recur-

sion is evidently impossible. From this contradiction we con-

clude that Eq. (i) cannot he satisfied by integers x, y, z, all of

which are different from zero.

Let us now turn to the equation

r^+:v^ = 2'"s3.
_ (9)

In view of the result just attained, this is impossible in non-

zero integers x, y, z if m is a multiple of 3; hence we shall not

consider this case further. It is clear that x and y are both

odd or both even; if they are both even, it is clear that the

equation may be divided through by an appropriate power

of 2, so that in the resulting equation x and y shall be both

odd. This may necessitate a change in the value of m. After
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X and y are made odd, \vc suppose that m is so chosen that

z also is odd. We shall now show that llic equation in tliis

reduced form is impossible in non-zero integers, except for the

trivial solution x = y=^z, which exists when m = i. It is obviously

sufficient to prove this for the case when x and y are relatively

prime.

Eq. (9) may be written in the form

ix+y){x--xy-{-y') = 2"'z\

The two factors of the first member have the greatest common
divisor i or 3 since x and y are to be taken relatively prime.

Hence the factor x~—xy-\-y~ is of one of the forms r^, ^r^. For

the former case we may write

^2_^.v+3,2^/-I+>'y'+;Y-l^'y = r', x+y = 2"'s\ (10)

where r and 5 are odd integers. In the latter case we have

I

-. /x-hy\~
,

/•y-y\~ 3 , m y ,
x~ — xy-\-y'' = l—^] +3( -j =3,r\ x-\-y^ 2 y-s-^-

or

x-yY^/^vp^y^^,^
a-+y = 2-.3^^-53. (11)

We shall merely outhne the remainder of the proof. Con-

sider Eqs. (10). From the first of these and the theory asso-

ciated with Eq. (3) above, we have equations of the form

r = r^-\-^u^, ^^ = (^ - gtu\ ^^—^ = 3z^(/^ - w2)

.

2 2

Thence from the second equation in (10), we have

/(/-3z/.)(/-f3t/.) = 2'"-V.

Now t"-\-^u^ is odd, being equal to the odd integer r. Hence

t~ — gii^ is odd. From the last equation it follows then that

/ has the factor 2"*'^. Thence we have equations of the form

l = 2"'-'t,\ t-^u=a\ /+3W = /33,

and hence the relation

a3+^3 = 2V.
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Similarly, by means of Eq. (ii), one is led again to an equation

of this last form. In each case it may be shown that the in-

tegers involved in this deduced equation are smaller than

those in (9) ; and hence the conclusion announced above is

reached by the Fermatian method of infinite descent.

GENERAL EXERCISES

1. Prove that the sum of the sixth powers of two integers cannot be the

square of an integer.

2. Prove that no integers x and y exist such that the difference of their sixth

powers is a square.

3. Prove that no relatively prime integers x and y exist such that the dif-

ference of their fourth powers is a cube.

4. Show that the equation x--\-y^—z''' is impossible in non-zero integers.

5. By means of the identity

(s^—t^+6sH+3sr-y+{t^-s^+6r-s+3ts'-y=sl-{s+t)-3H,s'-+st+r-)^

show that the Diophantine equation x^+y^^az^ has rational solutions (for which

2^0) when and only when a satisfies an equation of the form

au^=st{s+t).

6.* If p and q denote numbers of the form iSw+s and i8w+ii respectively,

and if a is a number of any one of the forms p, p-, q, q-, gp, gp-, gq, gq"^, 2p, 4p-,

2(^, 45 ; then neither of the equations

.v^+y = «-', xy{x-\-y^= az^,

has a non-trivial rational solution.

(For reference to several papers dealing with these equations see Encyclopedic

des sciences mathematiques, Tome I, Vol. Ill, pp. 32-33.)

7. By means of a single solution of the equation x^-{-y^=u^-\-v^ show directly

how to find a two-parameter solution.

8.* Obtain the general solution of the Diophantine system

_v'+_v^=;r''+i''=5''-|-/^ (Werebriissov, iqoq.)

9. Show that the equation .T^-|-r''-f='= 2;/^ is satisfied by x=u+v, y=u—v,

u = a^m^. v=bn^ z= — 6mn-, ab=6. By means of two solutions show how to find

a third. (Werebriissov, 1908.)

ID. By means of a single solution of the equation x^+y^+ti^+v^= t^ show

how to find a two-parameter solution. Generalize the result by increasing the

number of variables in the first member.

11. Consider the equation i+x+x^+x^^y^. Show that x=y, y=20 is the

only solution in which x is a prime number. Show how to find other rational

solutions. (Gerono, 1877.)

12. Show that no one of the following four equations has an integral solu-

tion:

2x'±i= c^ 2.v'±2=s3. (Delannoy, 1897.)
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13. Let x=a, y—fi, s=7 be a solution of the equation x^-\-y^=gz^. Show

that another solution is obtained by means of the formulae

Obtain a similar result for the equation x^-\-y^= yz^. (Realis, 1878.)

14. Show that the equation .v(x+i)= 2>'^ has no integral solution except

x=y=o, x=y= I.

15. Show that the equation 8a-^+i= >'" has no integral solution except .t=o,

y=i; x=i,y=s.
16. By means of a single solution of the equation x^-\-ay^—bz^ show how

to find a second; by means of this find a third; and so on. (Legendre.)

17. Find a two-parameter integral solution of the equation x^+y^=z^.

18. Find a three-parameter integral solution of the equation x--}-33'-=z<^+'t''.

Suggestion.—Observe that

u^+v^=iu+v){{^^y+s(^-^y].

19. Obtain solutions of the equation x^-{-y^= ii^+v-.

20. Find three-parameter solutions of the equation x^-\-y^-\-z^=u^-\-v^.

Suggestion.—Employ the identity

{-a+b+cy+{a-b+cy+{a+b-cy=ia+b+cy-24abc.

21. Obtain a three-parameter solution of the equation

x^+y^+z^—2xyz= u-+2v~.

2 2.t Find the general integral solution of the equation /'=.T'-t-;y'+i-

23.1 Construct another cubic equation for which large classes of solutions

may be found by the first method employed in § 15. Develop the theory of

this equation.

24. t Investigate the properties of the integer m such that the equation

^'+>'^+2'~3-V3'c= mt-

shall have solutions and find solutions involving arbitrary parameters (when

m is suitably determined). Treat the corresponding problems for the simpler

equation x^-\-y^=mt'.

25.1 Generalize the investigations called for in the preceding problem by

treating the more general equation

h{x, y. z)—mt-,

the function h being defined as in Ecj. (4) of § 13.

26. From 3^-|-4*-j-5^ = 6' deduce 7^-1-14^+ 17' = 20^.



CHAPTER IV

EQUATIONS OF THE FOURTH DEGREE*

§ 17. On the Equation ax^-\-bx^y+cx-\'^-\-dxy^-\-e\'^ = mz'^

For the equation

ax^-{-bx^y+cx'^y'^-\-dxy^-]-ey'^ = md^, (i)

it is obvious that the problem of finding rational solutions and

that of finding integral solutions are essentially equivalent.

It will therefore be sufficient to consider only one of these

problems; it is convenient to treat the former rather than the

latter. If the equation is multiplied through by m and mz is

then replaced by z we have a new equation of the form which

(i) takes on replacing m by unity. We shall therefore consider

only the case when w = i. Now it is clear that the problem

of finding rational solutions of (i) is equivalent to that of

finding rational solutions of the equation

ax^^bx^^cx^-\-dx-^c = z-; (2)

for if (i) is divided through by y"^ and in the result x is put for

x/y and z for z/y^, m having been replaced by i, we have

an equation of the form (2). We shall confine our attention

to the reduced equation (2).

The customary method of finding rational solutions of Eq.

(2) is due to Fermat. It takes different forms for different

cases. We shall examine these cases separately.

Suppose that e is a square number, say e = €^. Then write

z = mx^+ nx-\-€,

where m and n are rational numbers subject to our choice.

* Other matter relating to equations of the fourth degree is to be found in

§ II and in the exercises at the close of Chapter II.

74
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They are to be determined so that the value of z^, namely,

s- = ?n^x^+ imnx^+ {n^+ 2me)x~+ 2nex+ e^,

shall coincide with the first member of Eq. (2) except for the

terms in x^ and x^. For this it is necessary and suflticient that

d c d?
n = -, m = —

.

2e 2e Qe^

Then we have
ax'^-\-bo(^ = w^x^

+

2?nnx^,

an equation which is satisfied if

ft — 2WW
x = —- .

w^ — a

Thus we have in general a single rational solution of Eq. (2).

As an illustration, it may thus be shown that the equation

X^+ 3X3 _|_ -^^.2^ 2X+ I = S-,

has the solution x= — ^-, s = |.

In case a is a square number, say a =a^, we may write

z=ax^-\-mx-\-n,

and proceed in a manner similar to that employed in the pre-

ceding paragraph. Here we choose m and n so as to make
the expression for s^ coincide with the first member of (2)

except for the independent term and the term containing x,

and then determine x as before. We have

b c Ir' n- — e
ni =—, n = —,, x = -

.

2a 2a ba"^ d — 2mn

Here again we have in general a single rational solution of

Eq. (2).

If one applies this method to the particular equation

.r^+3r3+ 5x2+ 2X+i=s2,

one finds that a solution is afforded by x= —57/136.

If both a and e are squares, say a=or and e = e^, we may
write,

z = ax--{-nrx+ e,

and then determine m so that the expression for z- shall coin-

cide with the first member of Eq. (2) except for the terms
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containing x^ and x^ or the terms containing .t- and x. These

lead in order to the following pairs of values of m and x :

d c— nr — 2aem =— , x = —

;

2e 2am —

b

h d — 2mew=— , x = -

2a '}ir-{-2ae — C

Here we have in general two solutions of Eq. (2).

By means of the equation

X^ +3X^4- 5:^'"+ 2.T+ I = S"

the reader may readily supply a numerical illustration of this

method.

Gathering together the results thus obtained we may say

that we have a method which in general is effective for finding

a single rational solution of (2) when e is a square or when

a is a square and for finding two rational solutions when both

a and e are squares.

We shall now show that Eq. (2) may be reduced to one of

the special forms already considered provided that a single

rational solution is known.

Let x = k, z = p be a rational solution of Eq. (2). Then

replace x by t-\-k. It is clear that a new equation is obtained

of the same form as (2) and that p^ is the constant corresponding

to e. Since this constant is a square, the first method employed

above may be used to find a solution of the new equation.

Adding k to the resulting value of t we have a value of x which

affords a rational solution of Eq. (2). This in general is dif-

ferent from the solution with which we started. By means

of this second solution a third can in general be obtained;

by means of this a fourth, and so on. Hence, if a single rational

solution of (2) is known it is possible in general to find as many

as may be desired.

As an illustrative example, consider the equation

2r^+ 50:^+ 7.T-+ 2 = S-.

It has the solution
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If we replace x by t-\-i the new equation takes the form

2/4+ 13^3 _^34/-+37^+i6 = s^

the constant term i6 being a square number. A solution of

the last equation may be found by the methods indicated

above. By means of this a second solution of the equation in

X is readily obtained. With this in hand, the operation may
be repeated and thus a third solution of the equation in x

be obtained; and so on ad infinitum.

EXERCISES

1. Determine integral Pythagorean triangles such that the hypotenuse and

the sum of the legs shall be squares. (Compare Ex. 4 of § 3.) (Fermat.)

2. Determine integral Pythagorean triangles such that the hj'potenusc and

the difference of the legs shall be squares.

3. Find two or more pairs of integral Pythagorean triangles such that in

each pair the difference of the legs of one shall be equal to the difference of the

legs of the other while the longer leg of one is equal to the hjqDotenuse of the

other.

4. Find two or more pairs of integral Pythagorean triangles such that in

each pair the sum of the legs of one shall be equal to the sum of the legs of the

other, while the hypotenuse of one shall be equal to the greater leg of the other.

§ 18. On the Equ.\tion ax^-]-hy^=cz^

The equation

ax^+hy^ = cz~, (i)

w^hich is a special case of that considered in the preceding

section, has been treated by several authors and detailed in-

vestigations have been given of special cases, that is, of certain

special equations obtained by giving to a, b, c particular values.

No attempt will be made to summarize these investigations.

On the other hand, an exposition will be given of a new method

of attack which leads to solutions in an important class of

cases. Convenient references to a representative part of the

literature concerning Eq. (i) may be found in Encyclopedie

des sciences mathemaiiques, Tome I, Vol. Ill, pp. 35-36, and in

Jahrhiich uher die Forlschritte der Mathematik, at places indi-

cated by the following volume and page numbers: 10: 146,

148; 11: 136, 137; 12: 131, 136; 14: 133; 16: 154; 19: 187;

21: 181; 25: 295; 26: 211, 212.
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If Eq. (i) is multiplied through by a^ and ax is then re-

placed by X, an equation is obtained which is of the form

c(f^-\-my'^ = nz^. (2)

It is in this latter form that we shall treat the equation. We
shall suppose m to be any given integer and shall then restrict

n to be an integer of the form 5*+w^, where s and t are integers.

Then Eq. (2) takes the form

x-^^my^ = {s^+mt^)z". (3)

Here m, s, t are given integers and x, y, z are unknown integers

suitable values of which are to be sought.

It should be observed that there is no real loss of generality

in confining n to this form; for if Eq. (2) has a solution, then

there is a square number p- such that np^ has the form s^-\-mi^.

Since x^s, y = t, z = i is a solution of (3) we might proceed

to find another as in the work of the preceding section. We
shall, however, use a different method. Let us write z in the

form
z = p"-\-mq^, (4)

and seek to determine p and q and corresponding to them

values of x and y satisfying Eq. (3). We have

= {s^+mt^)\{p^--mq^y+m{2pqy\

= {s'(p2-mq^)+ 2mfpq]--\-m\P{p--mq^)-2S^pq\^

This equation will be satisfied if x^ and y^ have the values

X- = s^{p^ — mq^) + 2mt-pq,

y2 = ^2(^2 _ ^jq2-^ _ 2S"pq.

The last two equations form a system of the type studied

by Fermat under the name double equations, x, y, p, and q

being the unknown integers. We shall obtain solutions of

them by means similar to those employed by Fermat.

Multiplying the first equation in (5) by /- and the second

by s^ and subtracting, we have

^%2_ s2y2 = 2 (54

+

mt^) pq.
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This equation will be satisfied if we put

tx-\-sy = 2stp, tx— sy = -

St

(Here the coefficient of p is chosen so as to be equal to twice

the square root of the coefficient of p~ in the value of fx^

obtained by multiplying the first equation in (5) through by

f.) For X and y we have the values

y =tp-^l±E^.
2S-t

If we use these values of x and y and determine p and q so

that the first equation in (5) shall be satisfied, it is clear that

the second equation is also satisfied.

Substituting the foregoing value of x in the first equation

in (5) and reducing, we have

4sH^{s^+mt^)pq+ {s^-^mt^y^q^ = SmsH^pq - ^ms^^q^.

This equation will be satisfied if

p = (s^+mt^Y+^ms^t^,

q^-AS-t-{s^-mt^).

Making use of these values of p and q, we have for x^ y^ z the

values:

These values afford a single integral solution of Eq. (3).

Employing this solution and utilizing the methods of the pre-

ceding section, one may obtain a second solution; from this

in turn a third may be found; and so on. The reader may
readily supply numerical illustrations.
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EXERCISES

1. Obtain solutions of the equation 7x^—5/= 2Z^. (Pepin, 1879.)

2. Obtain solutions of each of the following equations:

x^—\A,oy^—z"-, 4.V*— 3s/=c^ (Pepin, 1879.)

3. Obtain solutions of each of the following equations:

3a;''— 2/=s-, x^+7>''*=8:-, 7:«;*— 2^= 52^.

(Pepin, 1S79.)

4. Show how to find solutions of the equation a.T^+i>'^=cs- in all cases in

which c=a^h.

§ 19. Other Equations of the Fourth Degree

We have seen (§ 6) that the sum of two biquadrate numbers

cannot be a biquadrate number; in fact, such a sum cannot

be a square number. Furthermore, the sum of two biquad-

rates cannot be the double of a square number (Ex. 7 of § 6).

That the sum of three biquadrates can be a square is readily

shown. Let x, y, z be integers such that

Let us square each member of this equation, multiply through

by z^, and then add x-^y^ — 2Z'^x-y~ to each member of the re-

sulting equation; the relation thus obtained may be written

in the form
{xyy+ (yzY+ (zxY = {z^ - x^f^. (2)

Now Eq. (i) has the general primitive solution

X = m^ — n^, y = 2mn, z = m^-{-n~.

Substituting these values in (2) we have the identity

\2mn{m~ — n-) \^+ \ 2mn{m~-\-ii-) Y+ (m-^-rYY

Thus we have a two-parameter solution of the problem of

finding three biquadrate numbers whose sum is a square.

If we put m=2, 71=^1, we have the particular illustrative re-

lation 124+ 204+ 154 = 4812.

Whether or not the sum of three biquadrate numbers can

be a biquadrate appears never to have been determined, though

Euler seems to have been of the opinion that it is impossible.
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It is easy to find three biquadrate numbers whose sum is

equal to the double of a square. In fact, these are afforded

by the identity

x4+y4+(x+# = 2(x2+xy+/)2. (3)

Now the relation

is satisfied if

x = a- — b~, y^2ab-\-b-.

If we substitute these values of x and y in (3), we have the

identity

(a^-b^y-h(2ab-\-b''y-\-{a^-\-2aby = 2{a^-\-ab+b-^y.

This affords a two-parameter solution of the problem of finding

three biquadrate numbers whose sum is equal to the double

of a biquadrate number. As a particular case we have

34+ 54+34^2.^4,

In a similar way one may obtain an identity affording a

two-parameter solution of the problem of finding three biquad-

rate numbers whose sum is the double of a number of any

even power. For this purpose it is sufficient to determine

X and y so that

x'^+xy+y^ = {a'-\-ab-^b-')\

2k being the index of the even power under consideration, and

substitute the resulting values of x and y in (3). This deter-

mination of X and y may readily be made by the method set

forth in § 7.

Whether the sum of four biquadrate numbers can be a

biquadrate number appears not yet to have been determined.

That the sum of five biquadrate numbers can be a biquadrate

number is readily shown. The smallest integers satisfying this

condition appear to be those involved in the relation

44+54+8^+^4+ 1^4^154.

Several identities affording a solution of this problem have

been obtained by tentative methods. (See a paper by Martin
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in the Proceedings of the International Congress of Mathe-

maticians, 191 2.) The following are two of them:

(8^2 _^ 405/ - 24/2)*+ (652 - 445/ - l8/2)4

+ (l452-45/-42/2)4+ (952_|_2y^2)4

+ (452+12^2)4^(15,2+45^2)4.

(4^2— I 2^2)4+ (2w2 — I 2WW — 6^2)4+ (4^2+ I 2^2)4

+ (2m2+ I 2WW— 6^2)4+ (3^2+ 9^2)-!

= (5^2+15^2)4

(4)

Another elegant problem concerning biquadrate numbers

is the following: To find two biquadrate numbers whose sum

is equal to the sum of two other biquadrate numbers; in other

words, to find solutions of the equation

xi+y = ir*+2)'*. (5)

This problem we shall now consider. If we set

x — a-{-b, y = c — d, u = a— b, v = c-\-d, (6)

and substitute in Eq. (5), we have

Euler has observed that this equation is identically satisfied if

6 = 2/(/6+ I0/4g2+/-y+4g6)^

c = 2g(4/«+/V+ io/¥+A''),

^-/(f+r)(-7'^ + i8/¥-.^^)-

With these values of a, b, c, d, Eqs. (6) afford a two-parameter

solution of (5).

Formulas for resolving the equation

X^+ V '+ 3-^ = M ' + V^ + W"^

have been given by several writers. See Intermedia ire des

Mathemaliciens , 19: 254; 20: 105. A two-paramctcr solution

of the equation
^,4 4.^.4 J^yi 4.34 = 54 +/4 4-^4 +z;4
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may be found from Eqs. (4) above by putting 11 = s and m = ;i,t

and equating the first members, this being legitimate since

the second members are identical.

GENERAL EXERCISES

1. Find a two-parameter solution of each of the following equations:

x*+ y^+2Z*=2t\

x'+ /+8g''=8/^. (Carmichael, 1913.)

2. Obtain solutions of the equation

x'+y*+z*=n^+v\

3. Find six biquadrate numbers whose sum is a biquadrate.

4. Find n biquadrate numbers whose sum is a biquadrate in case «= 7, 8,

9, 10.

5.* Show that x=3, y=i, z= 2 are the only relatively prime integers which

satisfy the equation

.v^— ^=5:^. (Fauquembergue, 1912.)

6. The equation x{x-]-i)=2y* has no integral solution other than .r=v=o,
x= y= I

.

7. Starting from the equation x-+ay-=z- generalize the first result of § 19.

8.* Show how to find all the solutions of the equation .v'+35y'=:- which

lie under a given limit. (Pepin, 1S95.)

9.* Show that the equation px*—4iy*=z- has no rational solution when
the prime p has any one of the values 5, 37, 73, 113, 337, 349, 353, . . ., rep-

resented by the form $m^-\-4mn+gn-. (This and several similar results are

given by Pepin in the Comptes Rendus of the Paris Academy, Vol. LXXXVIII,
pp. 1255-1257 and Vol. XCIV, pp. 122-124.)

10.* Obtain the general solution of the equation

x*-Sx^y^-\-8y*=zK (Pepin, 189S.)

II.* Obtain formulse affording solutions of the equation

ax'^+bx-y-+cy*= dz-. (Aubry, 1911.)

12.* Solve the equation

x'+4kx-y-+{2h-ir-y'=z\

where h is such that 4/^—1 and 2/^—1 are primes. (Pietrocola, 1S98.)

13. Obtain solutions of the equation

a-4+.v^v+.vV-+-vy'+/=:;-. (Moret-Blanc, iSSi.)

14. Obtain solutions of the equation

A-"— 5.v'-v-+53'-'=c2. (INIoret-Blanc, 18S1.)
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15.* Obtain the general solution of the equation x^— 4x-y-+y^— z*.

(Paraira, 1913.)

16. Obtain solutions of the equation

(.v2-/-2a;y)2-8xV==^. (Aubry, 1913.)

ly.f Determine whether the sum of three biquaclrate numbers can be equal

to a biquadrate number.

iS.f Determine whether the sum of four biquadrate numbers can be equal

to a biquadrate number.

19. t Discuss the values of a for which the equation

has non-zero integral solutions.

20.t Discuss the values of a (if any exist) for which the equation

has non-zero integral solutions.



CHAPTER V

EQUATIONS OF DEGREE HIGHER THAN THE FOURTH.
THE FERMAT PROBLEM

§ 20. Remarks Coxcernixg Equations of Higher Degree

When we pass to equations of degree higher than the

fourth we find that but httle effective progress has been made.

Often it is a matter of great difficulty to determine whether

a given solution is the general solution of a given equation.

Indeed this is true, to a large extent, of equations of the third

and fourth degrees. Even here there are but few equations

for which a general solution is known or for which it is known
that no solution at all exists. As the degree of the equation

increases, the generality of the known results decreases in a

rapid ratio. Only the most special equations of degree higher

than the fourth have been at all treated and for only a few of

these is one able to answer the questions naturally propounded as

to the existence or generality of solutions. (See Ex. 71, p. 116.)

Several papers have been written on the problem of deter-

mining a sum of different nth. powers equal to an nth. power;

but the methods employed are largely tentative in character

and the results are far from complete. Reference may be

made to Barbette's monograph of 154 quarto pages, entitled,

" Les sommes de p*^""" puisstnices distinctes egales a une p^^'"^

puissance,'' and to a paper by A. ]\Iartin in the Proceedings

of the International Congress of Mathematicians, 191 2. See

also the references in the latter paper.

It is an easy' matter to construct equations of any degree

desired in such a way that formula are readily obtained yielding

rational solutions involving one or more parameters; but this

is a trivial exercise. What is more profitable is a satisfactory

treatment of those equations which first come to mind when
85
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one considers the question as to what are the simplest equations

of various given degrees. Probably the most elegant equation

of degree n is the following:

:,;"4-/ = c". (i)

Concerning equations of higher degree the most desirable thing

to do first is to ascertain methods by which one may treat

completely the special cases, such, for example, as Eq. (i)

above.

For a long time Eq. (i) has held an interesting place in

the history and hterature of the theory of numbers. This

chapter is devoted principally to a study of that equation.

It was first introduced to notice by Fermat in the seventeenth

century. Fermat stated, without proof, the following theorem,

commonly known as Fermat's Last Theorem

:

// n is an integer greater than 2 there do not exist integers

X, y , 2, all diferent from zero, such that a:"+y'* = s''.

This theorem was written down by Fermat on the margin

of his copy of Diophantus. He added that he had discovered

a truly remarkable proof of the theorem, but that the margin

of the book was too narrow to contain it. No one has redis-

covered Fermat's proof, if indeed he had one (and there seems

to be no sufhcient reason for doubting his statement). In

fact, no general proof of the theorem has yet been found. For

Various special values of n proofs have been given; in partic-

ular for every value of n not greater than 100.

In the next section we shall develop the more elementary

properties of Eq. (i); and in the following section we shall

give a brief general account of the present state of knowledge

concerning this equation.

§ 21. Elementary Properties of the Equation

X -\-y =3
, n> 2

In the study of the equation v

^«+/ = c", «>2, (i)

it is convenient to make some preliminary reductions. If

there exists any particular solution of (i), there exists also
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a solution in which x, y, z are prime each to each. This may
be readily proved as follows: if any two of the numbers x, y,
z have the greatest common factor d, then from (i) itself it

follows that the third number of the set has also this same
factor. Hence the equation may be divided through by d!^.

The resulting equation is of the same form as (i). It is clear

that X, y, z in this resulting equation are prime each to each.

Hence, in proving the impossibility of (i), it is sufficient to

treat only the case in which x, y, z are prime each to each.

Again, since n is greater than 2, it must contain the factor

4 or an odd prime factor p. If n contains the factor 4, we
may write w = 4w, whence we have

From the corollary to theorem IV in § 5 it follows that this

equation is impossible. Hence, if Eq. (i) is satisfied, n does

not contain the factor 4. Now, if n contains the odd prime
factor p, we may write n = pm, whence we have

(.0^+ (y'")^ = (s"')^

Therefore, in order to prove the impossibility of Eq. (i) it is

sufficient to show that it is impossible when n is equal to an

odd prime number p; that is, it is sufficient to prove the im-

possibility of the equation x^+y^ = z^, where p is an odd prime.

By changing z to — c this may be written in the more sym-

metric form
a-^-j-Z+ c^^o. (2)

We shall take x, y, z to be prime each to each.

Special proofs of the impossibiHty of Eq. (2) for particular

values of p are known. One of these for the case/? = 3 has

been reproduced in § 16 above. The remainder of this section

is devoted to the derivation, by elementary means, of certain

properties of x, y, z, p, which are necessary if Eq. (2) is to be

satisfied.

We shall first derive the so-called Abehan formulae. Let

us write Eq. (i) in the form

Gr-f3;)(x^-'-.T^-S'+.T^-V+ . . .-xy''-^+y^-') = {-zy. (3)
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The second factor of the first member of this equation may be

written in the form

x+y x-\-y

_ {x+yy-p(x^yy-\'-h. +/>(x+y)/"'

x-\-y

= {x+y)Qix,y)+py'-\ (4)

where Q(x, y) is a polynomial in x and y with integral coeffi-

cients. From this and the fact that x and y are relatively

prime, it follows readily that the numbers represented by the

two factors in the first member of (3) have the greatest com-

mon divisor i or p.

If z is prime to p, this greatest common divisor must be i.

In this case the two factors of the first member of (3) are

relatively prime. Then, since their product is a pth power,

it is clear that each of them is a pth power. Hence we may
write

x-{-y = ii^, -
—^-^— = '/, z=—uv. (5)x+y

Let us next consider the case in which z is divisible by p.

Then x^-f^'^^o mod /?; thence, from the theorem of Fermat

(see Carmichael's Theory of Numbers, p. 48), it follows that

x-\-y^ov[iod p. That is, x-\-y has the factor p. Then, by

means of Eq. (4), we see that the second factor in the first mem-

ber of (3) also has the factor p. But the greatest common

divisor of the two factors in the first member of (3) is i or

p\ therefore, in this case, it is p. Hence one of these two

factors contains p to only the first power, while the other contains

it to the {kp-i)i\i power, where ^ is a suitably determined

positive integer. We shall show that it is the factor x+y

which contains p to the higher power. Suppose that x+y

contains the factor p to the I'th power, and let us write

x+y = pn,

where t is prime to p. From this we have
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whence

where / is an integer. Now, in the case under consideration,

y is prime to p, since by hypothesis, y is prime to z and :; is

divisible by p. Hence, x^-\-y^ is divisible by p"'^^
, but by

no higher power of p. Therefore {x^ -\-y^)/ {x-\-y) is divisible

by p but not by p". Thence it follows that the first and second

factors in the first member of (3) contain /?*^~^ and p respect-

ively. Therefore, we have relations of the form

x-\-y^p
utp— 1,.P

x-j-y
= pr, z=-p'uv, (6)

where ^ is a suitably chosen positive integer.

We can now readily prove the following theorems

:

I. // an equation of the fortn

in which p is an odd prime, is satisfied by integers x, y
are prime each to each and to p and are all different from zero,

then integers u\, m, ws, "^1, ^2, Vi, prime to p, exist such that

(2
b'^)

which

x+y = ui,

y-^z = ii2^,

z-\-x = uz ,

whence it follows that

x-]ry
= Vi' Z= —U\V\,

X= —U2V2,

y=- U:iV:i ;

y=Uui''+i{2'-tis'),

z=^{-ui''+ u/+u/). J

II. If an equation of the form

.v:^+/+ C^ = 0,

(7)

(8)

(2 ^'')

in which p is an odd prime, is sallsfiM by integers x, y, z, which

are prime each to each, and if z is divisible by p, then integers

Ml, W2, Us, vi, V2, vs, prime to p, and a positive integer k, exist

such that

\kp-l.

y-\-z = U2^,

z-\-x = uz^,

x+y
= pvi, Z=-p HiVu

X= —U2V2,

y= -U3V3;

(9)
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whence it follows that

^=i(/P-lwi^+«/-W3^), • (lo)

To prove these theorems it is sufficient to show that formulae

(7) and (9) are true. The equations in the first Hne in (9)

are equivalent to those in (6). The equations in the other

two hnes in (9) and in all three hues in (7) are essentially

equivalent to those in (5), the only difference being in the

interchange of the roles of x, y, 2. This interchange is legit-

imate, since x, y, z enter symmetrically into Eq. (2 ^'^).

The formulee contained in these theorems were given by

Legendre {Mem. Acad. d. Sciences, Instittct de France, 1823

[1827], p. i). They are also to be found in a letter of Abel's

to Holmboe and pubUshed in Abel's (Euvres, Vol. II, pp. 254-

255-

In the second theorem above we have said nothing con-

cerning the character of the integer k except that it is positive.

We shall now show that it is greater than i, whence it will

follow that z is divisible by p^. From formulae (9) we have

W2^+M/ = x+y+2S^o mod p.

From this it follows that M2+W3 is divisible by p. Let us write

U2— —U's-\-pa.

Then
U2^= — U3^ mod p^ or z<2^+ws^= o mod p^.

Thence, by aid of the last formula in (10), we see that z is

divisible by p-, and hence that ^> i.

We shall show next that the prime factors of Vi in both

theorems are of the form 2hp--{-i, where h is a positive integer.

Let 9 be a prime factor of ^i. Then in either case we have

z'l^o, z= o, y= u-2^, x^U3^, x^^y^= U2^^+U3^^^omQdq (11)

Let a be an integer such that usa^ 1 mod q. Then the last

congruence in (11) gives rise to the following:

(u2ay^+ 1=0 mod q.
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From this relation we see that

(^20;)^''^= I, U2a^l, (w2a)^^i mod g. (12)

Let m be the exponent to which U2a belongs modulo q.

(See Carmichael, /. c, pp. 61-63.) From relations (12) it

follows that m is a divisor of 2^^, but is different from i and p.

Hence m must have one of the values, 2, 2p, p-, 2p'^. We shall

show that it cannot have the value 2 or the value 2p, and hence

that m = p~ or m = 2p-.

Suppose that w= 2. Then ii2a^ — i mod q. This, together

with the relation usa^i mod q, yields the congruence ^2+^3 =
omod^-; whence x-\-y= o mod q. But this is impossible, since

vi is prime to x-\-y and q is a. factor of Vi. Hence m9^2.

Next suppose that m = 2p. Then, in view of the last re-

lation in (12), we see that {u2ay=—im.odq. But (usaY^i
mod ^. Hence U2'^-\-U3^=omodq; whence a;+>'=omod^.
Since the last relation is impossible, it follows that 7n^2p.

Then m = p- or m = 2p-. In either case q—i is divisible

by p", and hence by 2p~ since q obviously is odd. Therefore

q is of the form 2hp--{-i, as was to be proved.

In the case of theorem I we see by s>Tnmetry that the

prime factors of V2 and V3 are also of the form 2hp^-{-i.

In the case of theorem II it may be shown similarly that

the prime factors of vo and V3 are of the form 2hp-\-i. It is

sufficient to treat one of the numbers, say V2. Then we have

y^-\-z^^o mod q,

where 5' is a prime factor of V2 and is hence prime to y and s.

This relation may be treated in the same manner as the last

relation in (11) was treated above, and with the result already

stated. The reader can readily supply the argument.

Among the methods which conceivably might be used

separately for the proof of the Fermat theorem are the fol-

lowing: Assume that Eq, (2) is satisfied and find a set of con-

tradictory properties of x, y, s; assume that Eq. (2) is sat-

isfied and find a set of contradictory properties of p. (These

two methods might clearly be included in the more general

one in which contradictory properties of x, y, s, p would be
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obtained.) Theorems I and II above give properties of x,

y, s; they may be thought of in connection with the first

method of proof just mentioned. We shall now derive some

properties of p which are necessary if (2) is to be satisfied;

the results so obtained may be thought of in connection with

the second method of proof just mentioned.

Let us suppose that Eq. (2) has solutions in integers x,

y, z w^iich are prime to each other and to p. Let q be a prime

nuniber of the form ihp+ i. Suppose first that q is not a

factor of any one of the numbers x, y, z. Then from Eq. (2) we

have
A:^+/+s^=omod9. (13)

Let z\ be a number such that zzi = i mod q. Then we have

{xzxY+i^{-yziYmodq,

a relation which we shall write in the form

5^+1=/^ mod g. (14)

Raising each member of this congruence to the 2/zth power

and simphfying by means of the relations

s-""^^!, t-'^'^imodq, (15)

we have

/2/A (2.-i)p^/2/A (2.-2)p^_
_ . + / '^ V^^+ i=omodg, (i6a)

the parentheses quantities being binomial coefficients. Alulti-

plying this congruence through repeatedly by s^ and simplifying

by means of the first relation in (15), we have

It is clear that the existence of congruences (16) implies that

D2h^omo6.q, (17)
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where D2h denotes the determinant
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Z)2.=

2//

I

2//^-

2h

ill— I

211

2h-

2h

I

2//

ill— I

We may look on (14) and (17) as giving necessary properties

of q when no one of the numbers x, y, z is divisible by q.

Let us next suppose that g is a factor of one of the numbers
X, y, s; say that it is a factor of z. Then from Eq. (8) we
have

{-Hiy+ U2''+ ii.:.''= o mod q. (18)

Now, ^ is a factor of ui or of I'l, since it is a factor of z. Sup-

pose that g is a factor of vi. Then it is not a factor of —ui,
U2, or U3. Therefore congruence (18) may be used just as (13)

was employed above to derive a necessary relation of the form

(14) and thence the necessary relation (17). Suppose next that

g is a factor of «i. Then (18) becomes

whence

«2''+ 2<:/ = o mod q;

U2^"= u-f'' mod q. (19)

Now, by means of Eqs. (2) and (8) and the polynomial

theorem we see that

where the summation is taken over all non-negative numbers
a, ^, 7 for which a+^+ y = p. Of the numbers a, i3, 7 in a given

set, either one is odd or three are odd, since their sum is the

odd number p. For a set in which only one of them is odd
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the parenthesis expression in (20) vanishes. Hence from (20)

we have the relation

= APu^'u^u/V
, ,_^ J^~_^\u ^ ,,

^l^^W^^^ia^-^ (21)
-«:—*'(2X+l)!(2/X+ l)!(2J/+l)!

where the summation is taken over all non-negative numbers

X, /i, V for which X+pt+ j^ = |(/> — 3). Hence we may write

U\'-\-U2'-[-U-i' = 2PU1II2U3P,

Vt ,,/^~'V./ r;Wl''^M2'^''«3'^^ = 2^-V-lP^ ^22)
>^(2X+l)!(2M+l)!(2l^+l)! ^

' ^

For the case under consideration wi is a multiple of q while

from (19) we see that

M2^''^'i.'3^''^= M2''^+''^^ mod g.

Hence from (22) we have

7/2
(p-3)i

(2M+i):(2v+i)!

since g- is a factor of every term in the first member of (21)

for which \^o. Here the summation is for all non-negative

values of jj. and v for which p^+ v^hip — T,)- Now the sum
indicated by 2 in the last congruence has the value 2^~^, as

one sees readily by expanding (i+ i)^~^ and (i — 1)^~^ by

the binomial theorem and taking half their difference. Hence

From this it follows that P is not divisible by q. Moreover,

taking the 2//th power of each member of the last congruence

we have
j=p^~»(p-i) n-xodq;

or,

p'^^=i mod q.

This is a necessary condition on q in the case now under con-

sideration.

Gathering together the last result and those associated

with relations (14) and (17) we have the following theorem:
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III. // p is an odd prime number having the property that

a prime number q exists, q = 2hp-\-i, such that p'^^—i is not

divisible by q and either

Doh^o mod q,

where D2h denotes the determinant introduced hi Eq. (77), or

the congruence

5^+1 =f mod 9,

has no solution in integers s and t which are prime to q; then

the equation x^-\-y'^-\-z^ = cannot be satisfied by integers x,y,

z, which are prime to p.

Next let us suppose that Eq. (2) has a solution in integers

X, y, 2 which are prime each to each, one of them being divisible

by p. We shall suppose that it is z which is divisible by p.

In this case we shall need to employ the relations in theorem

II. Replacing Eq. (21), we shall now have another, obtained

in a similar manner; namely:

^^ (2X+ 1) !(2M+l) !(2i'+l) !

whence we may write

p'"'~^Ui''+ U-/-{-ll:>,'' = 2p%lU2Uz'P,

ip-l)\2 (2X+l)!(2At+l)!(2J'+l)

j2Ukp-i)
.
^^^2\p^^,^2^.p^^^2vp ^ 2"-^?''.

(23)

We shall presently have need for the last relation.

Again, let ^ be a prime number of the form 2hp-\-i. If

we suppose that q is not a factor of any one of the numbers

X, y, z, we shall be led as before to relations (14) and (17).

We shall therefore direct our attention to the other case, namely,

that in which g' is a factor of one of the numbers x, y, z.

Suppose that ^ is a factor of x. Then from (10) we have

p^p-yu^P-U2'+u/= o mod q. (24)

Now, 5 is a factor of M2 or of V2, since it is a factor of x. First

suppose that it is a factor of V2- Then it is prime to Mi, U2,

uz. Let u be chosen so that p^~^iiiU=im.od q and multi-
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ply both members of congruence (24) by u^. A relation is

obtained which may be written in the form

^^-1^5^+f modg, (25)

where 5 and t are prime to q. This congruence may now be

employed in the way in which (14) was used in the preceding

argument. A set of congruences modulo q, 2h in number,

may be found in the following manner: The first arises from

(25) by raising each member to the 2//th power and simpli-

fying by means of relations (15). The others come from

this one by repeated multiplication by j^/'^ft-Dp ^^^ reduction

by means of (15). The existence of these ih congruences

implies that

Z^aA^omodg, (26)

where

2/;

I

2//

2

2—p

2h 2J1

2J1— I

2—p2h(p-l)

2—p

2h

2ft(p-l)

2hip-l) 2h

2/; —

2

2h

2h— I

Next let us suppose that g is a factor of U2. Then from

(24) we have readily

Ui^^
^p-'""^-'' 11,^^ mod q.

Employing (23) now as we did (22) in the previous case, we

have

Raising each member of this congruence to the 2/?th power

and simplifying, we have

/"=! modg.

This, in connection with the relation /?-''^ = i mod g-, leads to

the congruence
p^^=i mod g,

provided that p is greater than 3.
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It is obvious that in the case in which g is a factor of y,

we should be led to the same relations as those just obtained

when 5' is a factor of x.

Finally, let us suppose that 5 is a factor of 2. Then from

(10) we have

-/^-'z/L^-f«,/+«:/= mod q.

Now, 5' is a factor of ui or of I'l, since it is a factor of 2. If

we suppose that 5 is a factor of ?i, we shall be led as before to

relation (26). If we suppose that 5 is a factor of ui^ then from

(9) we have x-\-y=o mod q.

Gathering together the results just deduced and those in

theorem III, we have the following theorem

:

IV. // there exists a prime number q, q = 2hp-{-i, which is

not a factor of any of the numbers

^2ft' -2A, P -I,
and if the equation

is satisfied by integers x, y, 2, w/iich are prime each to each, then

one of these integers (say 2) aiid the sum of the other two {say

x-\-y) are both divisible by q.

We shall give one other theorem which may be demon-

strated by elementary means; namely, the following:

V. If p is an odd prime and the equation

a;^+/+2^ = o,
^

(2^'^)

has a solution in integers x, y, z, each of which is prime to p,

then there exists a positive integer s, less than 2(P~^)j ^"<^^^ ^^^^^

(5+ 1)^= 5^+ 1 mod p3. (28)

From Eq. (7) we have

{x-^yy-'^ui'"''-''^! mod p'~.

This relation and two similar ones lead to the following:

(x-^yY^x+y, (y+2)^= 3'+2, (2+a;)" = 2+:^ mod p'-. (29)

Now,
x-\-y= —z mod p\

whence
{x+yY^ -c^^x-^+/ mod p'^. (30)
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Similarly,

[yj^zY^y'+z^, {z+xY^z'+x" mod p\ (31)

From relations (29), (30), (31) and Eq. (2 ^'^), we have

x-\-y-\-z^o mod p^.

From this we have

{x+yY= -s^=x^+/ mod p^.

Let n be an integer such that yu=i mod p'^. Then we have

{xu+ iY^ {xuY+ 1 mod p^.

Hence we have the congruence

(c7+ i)^= cr^+ imod/?^ (32)

where a is a positive integer less than /?^.

• We shall next show that congruence (32) implies and is

implied by the congruence

((T+ i)J'^= c7^^+imod/?3. (23)

Let us define integers X and /x by means of the relations

{a+lY = <r+ l+\p, a'' = G+ixp.

Then
(cr+ir = ^^+ l + (X-M)A (34)

We have also

((7+i)'''^(<7+i)^+X/>2(cr+i)p-imod^^

= ff+ 1 + X/?+ X/)2 mod ^3^

Likewise

(i^'-^<j-\-ij.p-\-np" mod p"^.

From the last two congruences we have

(a+l)^^^a^^+I + (X-M)(/^+/'2) mod pK (35)

From (34) and (35) we see that a necessary and sufficient

condition for either (32) or (33) is that X— ^1=0 mod p'^. There-

fore, (32) and (33) are equivalent; that is, if one of these

congruences is satisfied for a given value of a-, so is the other.

In view of this result we shall have proved relation (28)

as soon as we have shown the existence of an integer s less than

\{p—T.) and such that

(5+1)^' ^5^'+ 1 mod p^. (36)
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Let t be that residue of a modulo p for which the absolute

value is a minimum. Then from (33) we have

Three cases are possible, (a) We may have ^ = |(/?— i). Then

(/,+ i)^'==(^-i)p=+2P'mod/>3-

or

so that for this case we may take s = i. {h) We may have t

positive and less than {\{p—i). In this case we may take

s = t. {c) We may have t negative and greater than —h{p—i).

In this case we write s-\-i = —t\ then

{- sY-={- s- lY'+i mod p^\

whence (36) follows readily and then (28).

This completes the proof of the theorem.

By means of theorem III, Legendre has shown that the

equation x^+y^-\-z^ = cannot be satisfied by integers x, y, z,

each of which is prime to p if p<igy. ]Maillet has shown that

the same is true if ^< 223. Mirimanoff has extended the

result to every p less than 257. By a further penetrating dis-

cussion Dickson {Quart. Journ. Math., vol. 40) has proved

that the equation is without a solution in integers prime to p
iip<68s7-

We shall illustrate the means of obtaining these results

by proving that the equation x^-\-y^-\-z^^o has no solution in

integers x, y, z, prime to p if 2p-\-i or 4/>+i is a prime. For

this purpose we employ theorem III.

If 2^-fi is a prime, we may take q = 2p-\-i and h = i. Then

D.=

Now 2^+ 1 is not a factor either of 3 or of />-— i = {p—i){p-\-i).

If 4^+ 1 is a prime, we may take h = 2. Then

4641
6414
4146
1464

D.= = -3-f'
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Now 4p-\-i is not a factor of 3.
5'^ or of

From these results and theorem III, we conclude that the

equation x^-\-y^-\-z^ = o has no solution in integers x, y, z,

prime to p if either 2p-\-i or 4p-\-i is a prime; in particular,

therefore, if

P=3^ 5' 7, II. 13. 23, 29, 41, . •

§ 22. Present State of Knowledge Concerning the

Equation x^+y^-'rz^ =

In the present section we shall give a brief statement of

the more important known facts about the equation

x^+y^-\-z'' = 0, /' = odd prime, (i)

over and above those which we have already mentioned. These

have not yet been demonstrated by elementary means; and

therefore a proof of them would be out of place in this intro-

ductory book.

Cauchy {Comptes Rendiis oi Paris,Vol. XXV, p. 181; CEuvres,

(i) 10: 364) states without proof the remarkable theorem

that if Eq. (i) is satisfied by integers x, y, z which are prime

to p, then

It is to Kummer that we owe the most important develop-

ment of the theory of Eq. (i). (See references to Kummer's

work in H. J. S. Smith's Report on the Theory of Numbers

in Smith's Collected Mathematical Papers, Vol. I, p. 97.) Kum-
mer makes use of complex numbers and by aid of them proves

the following general theorem

:

If ^ is a prime mmiber which is not a factor of the numerator

of one of the first ^{p — ^) Bernoulli numbers, then Eq. (i)

has no solution in integers x, y, z, all of which are different

from zero.

In case ^ is a factor of one of the first \{p — z) Bernoulli

numerators, Kummer finds other properties which it must

possess. These we shall not state.
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By means of his general theorem Kummer shows in par-

ticular that Eq. (i) is impossible ii p^ loo.

Starting from results due to Kummer, Wieferich (Crelle's

Journal, Vol. CXXXVI) has shown that if Eq. (i) is satisfied

by integers prime to p then *

2^~^ = i mod p^.

Mirimanoil (Crelle's Journal, Vol. CXXXIX) has shown that

p must in this case also satisfy the relation

3^-1 = 1 mod ^-'_

He also derives other relations which are less simple in form.

Later Furtwangler has proved two theorems from which

the above criteria of Wieferich and ]Mirimanoff may be deduced.

These theorems are as follows:

If xi, X2, Xs are three integers, different from zero and with-

out common divisor, among which subsists the equation

where p is an odd prime, then

I. Every factor r of Xt (/ = i , 2, 3) satisfies the congruence

r^-'^imodp^,
if Xi is prim.e to p;

II. Every factor r of XfdzXt (/, ^ = 1,2,3) satisfies the

congruence

r^-'^imodp^,

if Xt-\-Xi; and Xt — Xi are prime to p.

By means of relations due to Mirimanoft" and Furtwangler,

Vandiver (Trans. Amer. Math. Soc, Vol. XV) has shown that

if Eq. (i) has a solution in integers x, y, s, all of which are

prime to p, then p has the following property:

(i) If p is of the form 3W+1, then either

2^~^= i mod /?"* or 5^'~^ = i mod ^2;

(2) If p is of the form 3?/+ 2, then either

2P-'=imod/)^ or s^-'^y''-'^ i mod />2.

* The smallest prime p for which this relation is satisfied is p= 1093. There

is no other p less than 2000 satisfxing this relation.
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Vandiver has also recently announced (Bull. Amer. Math.

Soc, March, 19 15) that he has found a relation which impUes

several of those previously obtained, in particular, those in

the theorems of Furtwangler above.

Reference should also be made to two papers by Bern-

stein, one by Furtwangler, and one by Hecke in the Gbttinger

Nachrichten for 19 10.

In conclusion it is to be remarked that the Academy of

Sciences of Gottingen holds a sum of 100,000 marks which is

to be awarded as a prize to the person who first presents a

rigorous proof of Fermat's Last Theorem. The existence of

this prize money has called forth a large number of pseudo-

solutions of the problem. Unfortunately, the number of

untrained workers attacking the problem seems to be increas-

ing.

GENERAL EXERCISES

I.* There do not exist three binary forms which afford a solution of the

equation x^-\-y^=z^, n>2, for ev-ery pair of values of the variables in those

forms. (Carlini, 191 1.)

2. If the equation x"+y^—z^ is impossible, so is each of the equations

„2«_4^«=;2 and si2s+i)=t^\ (Lind, 1910.)

3. If the equation x^-\-y^=z^ is impossible, so is each of the equations
^2n^^2n^ ^. ^^^ u^n_^1n^ ,/''. (Liouville, 1840.)

4. If the equation x^-\-y^=z^ is impossible for every ^ greater than 2, then

is the equation u''\^-\-v^ii^+u^u'^=o impossible for every pair of integers m
and M, except for the trivial solutions 1,0,0; o, i, o; o, o, i. (Hurwitz, 1908.)

5.t Determine systematically a large number of simple equations which

are impossible when x^-{-y^—z^ has no solution.

6.* If we write

Si=x+y-\-z, so—xy-\-yz-\-zx, Si=xyz,

then the condition

.v^+/+c^=o, (i)

can be written in the form

<l>p{suSn,S3)= 0, (2)

while x, y, z are roots of the cubic equation

fi-Sil-+ S-2t—Sz=0. (3)

Then Eq. (i) can have a rational solution only when all the roots of (3) are

rational, its coefficients being subject to the condition (2). By aid of this remark

show that (i) is impossible when p= 17. (Mirimanoff, 1909.)
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7.* If the equation x^+y^+z^=o has the primitive solution x,y, z, p being

an odd prime, and G is the greatest common divisor of x+y+z and x-+xy+y'',

then integers /, K, L exist such that

y'^+yz+z-=CI, z-+zx+x-=GK, x-+xy+y-=GL,

and all the factors of the numbers /, K, L are of the form 6/x^+i. Show that

to demonstrate the impossibility of the equation x''+y^+z^=o it is sufficient

to prove that two of the numbers /, K, L are equal or that one of them is unity.

(Fleck, 1909.)

8. Show that the equation y({A''^^—u^)— t~ is impossible in integers u, v, I,

all of which are different from zero.

Q.f Note that when p is an odd prime the equation

with the condition that x, y, 2 are prime to p, implies the three Pjlhagorean

equations

x'^+y^=zi-, xr+y-=z-, x'^+yi-=z^.

What numbers x, y, z can satisfy these three equations?

10. Show that the equation x^^+y^^—z'^, in which p h a prime number,

implies the coexistence of two equations of the form

II.* Investigate the problem of solving the equation x^+y^=pz^, where

p is an odd prime. (Hayashi, 1911.)

12.* Investigate the problem of sohang the equation x^+y^=cz^, where

p is an odd prime. (Maillet, 1901.)

13.* Provethat neither of the equations i^= (s^+y^)-— (zy)^, i^= {z'^—y-y— (zy)^

possesses an integral solution. By means of this result prove the impossibility

of each of the equations

u^+v^^-d'^, ?<io+i'io=u'i<'. (Kapferer, 1913.)



CHAPTER VI

THE METHOD OF FUNCTIONAL EQUATIONS

§ 23. Introduction. Rational Solutions or a Certain

Functional Equation

There is a method which will sometimes be found useful

in the theory of Diophantine analysis and which we have

had no occasion to employ in the preceding pages. It may
conveniently be described as the method of functional equa-

tions. It consists essentially in the use of rational solutions

of functional equations as an aid in solving Diophantine problems

of a certain type, a type in fact which plays an important role

in the work of Diophantus. In this chapter we shall give a

brief illustration of the method by employing it in the solution

of certain problems first treated by Diophantus and Fermat.

It should be said that the principal value of this method

lies not so much in its use for the solution of given problems

as in the fact that it renders possible an arrangement of cer-

tain problems in an order in which they may profitably be

investigated. A treatment of these problems from this point

of view seems not to exist in the literature. The primary

purpose of this chapter is to direct attention to the possibil-

ities of this general method of functional equations and to

give an indication of how it may be employed. A general

systematic development of the method is not attempted.

Diophantus more than once makes use of the identity

a2(a+ i)2+a2+ (a+ i)- = (a2+a+ i)2

in the solution of problems. This identity may be looked

upon as affording a solution of the functional equation

ahia^-]-a'^+iia^=Va^, (l)

104
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in which Ua and Va are to be determined as rational functions

of a. It is clear that this equation may be written in the form

{d^+ l){lla^+ l)=Va~+ l. (2)

The first member may be written as a sum of two squares,

thus

(a2+ i)(w,2+ i) = (ai<a±i)-+ («aTa)2. (3)

The second member may be written as a sum of two squares

in a great variety of ways. Thus, if we write

Va^+ I = (I'a+ a-a)-+ ( I + m^Xa)'^, (4)

we have
2VaXa +Xa-+ 2maXa+ma^Xa~ = O.

Besides the solution Xa = o of this equation, we have

_ _2{ma+Va)

ma~+ I

Thence we see that

j'a^+i^rt'a

—

—;r,— \ + I —, • (s)
I

Wa-+ I
J i

W„-+ I
J

'^'

From (3) and (5) we see that (2) will be satisfied if

2(Wa+ ^c'c)
1

aUa± I = Va —

Ua^a= I —

Wcz-+ I

2ma(ma-\-Va)

Wa^+ I

(6)

It is obvious that these two equations may be solved rationally

for Ua and Va in terms of nta, so that we have a rational solu-

tion of (2), and hence of (i), for every rational function Wq.

This solution may be written in the following form:

Va= —a±

2 2ma \ ,

(a-+ i)fwa±i)- 1

-+ I Wa-+ i[ ma~+ 2ama—i
J

m

(a2+ i)(;,/„±i)
(7)

Wa^+ 2ama—

I

J

To the solution of (i) afforded by (7) we should adjoin those

gotten by taking Xa = o in (4) , namely

:

Ma=±Cr+ I, Va = a±:{a~-\-l), lla=-, Va = (l-\—

•

a a
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We write down some simple particular solutions for which

we shall have use in § 25.

2 2

a

2

a
(8)

§ 24. Solution of a Certain Problem from Diophantus

In Book V of his Arithmetica Diophantus proposes and shows

how to solve the following problem:

To find three squares such that the product of any two of them,

added to the sum of those two or to the remaining one, gives a square.

If we denote one of these squares by a^ it will be conven-

ient to take Ua^ for a second one, where Ua is one of the functions

denoted by this symbol in the preceding section. For this

purpose Diophantus uses Ua = a-{-i. He then observes that

the three numbers,

a^, (a+ 1)2, 4fl2+4a+4, (i)

have the property that the product of any two of them, added

to the sum of those two or to the remaining one, gives a square.

This may readily be verified by the reader. Then to complete

the solution of the problem it is sufficient to render 4a^+4a+4,

and hence a^+a+ i, equal to a square. Setting, as usual,

a^+a+ i = (w — o-)^,

we have
m- — i ( N

a =—T", (2)
2W+I

where m is any rational number whatever. If this value of

a is set in expressions (i) we have the three squares sought.

Fermat has shown that this result * of Diophantus may be

employed in the solution of the following problem

:

* It may be remarked that the result of the next section may also be used

for the same purpose.
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To find four numbers such that the product of any two of them

added to the sum of those two gives a square.

For three of the numbers sought take a set of numbers (i)

where a has the form given in (2). Following Fermat, we
shall take the particular set given by Diophantus, namely:

25 64 iq6

9 ' 9
'

9
"

This is obtained by taking m= —2 in equation (4). Let x be

the fourth number sought. Then it is necessary and suffi-

cient that X satisfy the conditions *

9 9 9 9 9 9

or more simply the conditions

34.T+25=n, 73.T+64=n, 205.T+ 196=0. (3)

This is an example of the so-called triple equation of Fermat.

We shall find a solution by the method originated by Fermat.

Replace x by a function of / in such way that the first equation

in (3) shall be satisfied. For this purpose it is sufficient to

take

x = 34/2 -(-10/.

Then the other two equations in (3) become

2482/-+ 73o/+64= n, i4,965/-+ 205o/+i96=n. (4)

We have to determine / so as to satisfy these equations, an

example of the so-called double equation of Fermat.

The interesting method of Fermat enables one to find an

indefinitely great number of solutions of system (4). Multi-

plying the first equation through by 196 and the second by 64,

we have two new equations of the same form as (4) with the

further condition that the independent terms in the first mem-
bers are equal. These equations are

486.472/2-|-i43,o8o/-fi2,544= D,

957,76o/2+ i3i,2oo/+i2,544= D,
'

'

* The symbol D stands for a square number with whose value we are not

concerned. It may differ from one equation to another.
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The difference of the two first members is 471,288/" — ii,880/.

We may separate this into two factors, thus:

i425,./4,398,688^_^ \_
(6)

28 \ 475

The separation is effected in such way that the independent

term in the second factor is twice the square root of the inde-

pendent term 12,544 in Eqs. (5). Now, if half the sum of

the two factors in (6) is squared and the result equated to the

first member of the second equation in (5), it is obvious that a

rational value of t will be obtained satisfying that equation.

It is clear that this value will then also satisfy the other equa-

tion in (5). This value of / affords a value of x, the fourth

number in the set to be determined.

Eqs. (4) have not merely a single solution, but an infinite

number. These may be found one after the other as follows:

Let h be a value of / satisfying Eqs. (4) and write / = w+/i.

Putting this value of t in (4), we obtain a pair of equations in

u of the same form as (4) . These can be solved by the method

just given for solving (4). We thus obtain a single solution

u = u\ of these equations. Then t = u\-\-t\ is a solution of (4).

By the aid of this solution of (4) another may be obtained;

and so on indefinitely.

By means of each solution of (4) we obtain a new value of

X affording a solution of the problem proposed.

It should be observed that the method of solving Eqs. (4),

and hence that of solving Eqs. (3), is general, being apphcable

to all equations of the types (3) and (4).

§ 25. Solution of a Certain Problem Due to Fermat

Fermat has given attention to the following problem

:

To find three squares sucJi thai the product of any two of

them, added to the sum of those two, gives a square.

He has indicated that this problem is capable of a solu-

tion dift'erent from that which is incidental to the solution

given by Diophantus for the first problem treated in the pre-
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ceding section; but he gives no hint as to the method which

he employs. He says, however, that it leads to an indefinitely

great number of solutions. Making use of the solutions of

the functional equation treated in § 23, we shall now give

two methods for solving this problem with such result.

Let Ua and Wa be two rational functions of the rational

number a such that

Then if we take a^, Ua~, u'a^ for the three squares sought, we
have to determine a so as to satisfy the single equation

UahVa^+ Ua' +1ii'a~ = D . (2)

For determining appropriate functions Ua and li'a we have the

results of § 23.

Let us take

2
Wo = (i+ I , ti'a = -

.

a

Then (2) becomes

(a+i)-/^y+ (a+ i)2+0y = n,

or

a-*+ 2a3+ 5a2+8a+8 = n.

By means of the general method of § 17 in Chapter IV, it is

possible to find an infinite number of values of a satisfying

this equation. For every such value of a the three numbers

or', (a+ i)2, 4/a2 furnish a solution of our problem.

We may also proceed as follows: Denoting the square

in the second member of (2) by /u", we may write that equation

in the form

The second member may be separated into a sum of two squares

as in Eq. (5) of § 23. Thus we have an equation of the form

;za-+ i
J ;za-+ i

J
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where tta is an arbitrary rational function of a. This equation

will be satisfied if

2{na-\-ta)
UaWa+l =ta

lia— Wa = I — -

Wa^+I

««"+ !

These equations may be solved rationally for Wa and ta

in terms of iia and Ua- Thus, we have for Wa the value

_ (lla - I ) (ng'^ — I ) + 2na(na^+ Wg^+ 11a+ I

)

. ^

(Wa^+ l) (Wa"' — 2naUa— I

)

With this value of Wa, Eq. (2) will be satisfied whatever

rational functions Ua and Ua may be. If Ua is given any value

such as those in Eqs. (7) and (8) of § 23, the first equation

in (i) is satisfied. It is then sufficient to determine a so that

the second equation in (i) is satisfied. Then for this value

of a the squares a-, iic?, W(? furnish a solution of our problem.

As an illustration of this result let us take

Wo = a+ I , Ua—l.

Then
2

Wa =
a+ i

so that the condition on a may be written

(a+i)2 (a+ i)-

or

An unHmited number of values of a may be found satisfying

this equation (see § 17). We may get one of them by taking

for the square in the second member the quantity

4

and proceeding according to the methods of § 17 in Chapter

IV. Thus, we have a = 32/9. Then our three squares are

1024 1681 324

81 ' 81 ' i68i'
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GEXER-\L EXERCISES

i.f Determine all the polj-nomial solutions of the functional equation

a-l{a-+a-+ Ua-= I'a-.

Apply the result to the solution of a group of Diophantine problems.

2.t Investigate the problem of finding three squares such that the product

of any two of them exceeds the sum of those two by a square.

3.t Obtain a solution of the system of equations

Uxi'x— I= D , VxU'x— I= D , "li'xUx— I= D

,

in which Ux, Vx, i^'x are unknown rational functions of x. Apply the result to the

solution of problems in Diophantine analysis. (Cf. Diophantus, Book IV,

Problem 24.) ^^

Suggestion.—The given equations may be written in the form j-—" "
I

2<jI'j=Pj-+i, '<-'x'^'x^<ri-+T-, -^xUi=Tx'^+i.
'

(i)

Then if equations of the form

Ux=<ix-\-hx-, i'x=Cx'^+dx-, 'd.'x=ex--\-jx^ (2)

are assumed and substitution is made in system (i), certain of the functions

introduced in Eq. (2) may be determined in terms of the others. A rational

solution of the given system of equations is thus obtained. This process is also

capable of generalization in accordance with the suggestion afforded by Eq. (5)

of § 23.

4.t Treat the corresponding problems for the system of functional equations

UxVs+ 1= D , i'x'^'z+ 1= D , 'di'xtlx^- 1= n

.

(Cf. Diophantus, Book IV, Problem 22,.)

5.t Find rational functions Ux, t'i, -^i'^such that the continued product of their

squares increased by the square of each one of them separately shall be the

square of a rational function of x. Apply the result to problems in Diophantine

analysis. (Cf. Diophantus, Book V, Problem 24.)

6.t Find rational functions Ux, Vx, Wx such that the continued product of

their squares decreased by the square of each one of them separately shall be

the square of a rational function of x. Apply the result to problems in Diophantine

analysis. (Cf. Diophantus, Book V, Problem 25.)
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1. Show how to find four numbers such that if one takes the square of their

sum plus or minus any one singly, then all the eight resulting numbers are squares.

(Diophantus.)

2. Show how to find three numbers whose sum is a square, such that the

sum of the square of each and the succeeding number is a square.

(Diophantus.)

3. Show how to find two numbers such that their product plus or minus
their sum is a cube. (Diophantus.)

4. Show how to find three numbers such that the square of any one of them
plus or minus the sum of the three is a square. (Diophantus; Hart, 1876.)

5. Show how to find three numbers such that the product of any two of

them plus or minus the sum of the three is a square. (Diophantus.)

6. Show how to find four numbers such that the product of each two of them
increased by unity shall be the same square. (Diophantus; Lucas, 1880.)

7.* Show how to find five numbers such that the product of each two of

them increased by unity shall be a square. (Euler, Legendre.)

8.* Obtain the general solution of the Diophantine system y=x--\-{x-\-i.)-,

y'^=z'^+{z-\-iY. Generalize the results by treating also the system y= x'^-\-t{:x-{-aY,

y2=s2+^(s+/3)2. (Jonquieres, 1878.)

9.* Develop a theory of the Diophantine system .T=4_y-+i, x"=Z'-\-{z-\-iY.

(Gerono, 1878.)

10. Obtain a single-parameter solution of the system x--\-y'—i= ii-,

x'—y-—i= v''-. (Arch. Math. Phys., 1854.)

II.* Obtain the general solution of the Diophantine equation

y'''= x{x-\-i){2x-\-i). (Pepin, 1879.)

12. Apply the identity

{S-— 2St—l-Y-\-{2S+i)s-t{2l-{-2Sy== {s^-\-l'^+10f-S-+^sfi+12SHY

to the resolution of certain Diophantine equations. (Desboves, 1878.)

13. Find all the integral solutions of the ecjuation {x-\-iY—x"'^^-\-i.

(Meyl, 1876.)

14. Develop methods for finding solutions of the Diophantine equation

2x'^y--{-i==x--\-y--\-z-. (Valroff, 191 2.)

15. Develop methods for obtaining solutions of the Diophantine system

x—u"^, x-\-i=2v-, 2x-\-i= iw-. (Gerono, 1878.)

16. Determine those Pythagorean triangles for each of which the sum of

the area and either of the legs is a square. (Diophantus.*)

17. Determine those Pythagorean triangles for each of which the area exceeds

either leg by a square. (Diophantus.*)

112
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i8. Determine those Pythagorean triangles for each of which th; area exceeds

the hypotenuse or one leg by a square. (Diophantus.*)

19. Determine those Pythagorean triangles for each of which the sum of

the area and ether the hypotenuse or one leg is a square. (Diophantus.*)

20 Determine those Pythagorean triangles for each of which the line bisect-

ing an acute angle is rational. (Diophantus.*)

21. Determine those Pythagorean triangles for each of which the sum of

the area and the hypotenuse is a square and the perimeter is a cube.

(Diophantus.*)

22. Determine those Pythagorean triangles for each of which the sum of

the area and the hypotenuse is a cube and the perimeter is a square.

(Diophantus.*)

23. Determine those Pythagorean triangles for each of which the sum of

the area and one side is a square and the perimeter is a cube. (Diophantus.*)

24. Determine those Pythagorean triangles for each of which the sum of

the area and one side is a cube and the perimeter is a square. (Diophantus.*)

25. Determine those Pythagorean triangles for each of which the perimeter

is a square and the area is a cube. (Diophantus.*)

26. Determine those Pythagorean triangles for each of which the perimeter

is a cube and the sum of the perimeter and area is a square. (Diophantus.*)

27. Give a method of finding an infinite number of solutions of each of the

equations x^-{-y^=n-+v-; x^™'^ ^ -{-y^^'^^— ti--\-v^, m> i.

(Aubry, Miot, 1912.)

28. If a Diophantine equation can be separated into two members each of

which is homogeneous and the numbers representing the degrees of the two

members are relatively prime, show how solutions may always be obtained in

an easy manner. By means of special examples show that this method may often

be used to obtain results which are not trivial in character.

29. Find three squares in arithmetical progression such that the square root

of each of them is less than a square by unity. (Evans and Martin, 1873.)

30. Obtain all the integral solutions of the equation x^— y^.

31. Determine all the positive integral solutions of the equation

4x'— y^=3.v-ys^. (Swinden, 191 2.)

32. Show that the system xy+x-\-y=a^, xy—x—y=b- is impossible in

integers x, y^ a, b all of which are different from zero. (Aubry, 191 1.)

SS-* Obtain the general rational solution of the system of equations

ax^+b=u^, cx^+d=(^. (Welmin, 1912.)

34.* Show that the equation j('"+v'*=w in which w, m, k are positive integers

possesses an algebraic solution u, v, w each function of which is expressible as

* In the case of Problems 16 to 26 Diophantus shows merely how to find

particular rational solutions. It is doubtless difficult to find general solutions

of some of these problems; but particular solutions may be found without great

difficulty.
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a polynomial in the single variable / in each of the following cases and only in

these

:

(i) u"'+v"'=w'^,

(2) u--\-v~=w
,

(3) u^-\-v^=w-,

(4) U*+V^='W'',

(5) ii*+v-=w^,

(6) u^-\-v^=w^. (Welmin, 1904.)

35.* Obtain all the solutions of the equation

m arctan —\-n arctan -= k -
X y 4

in integers k, in, n, x, y, showing that there are but the following four sets:

I, I, I, 2, 3; I, 2, —I, 2, 7; I, 2, I, 3, 7; I, 4. —I, 5, 239. (Stormer, 1859.)

36.* Develop the theory of the equation ax" +by^ =cz^
, p being a prime

number. (Maillet, 1898.)

37.* Develop the theory of the equation ax"''-\-by'*=cz^. (Desboves, 1879.)

38. Of each of the following equations find a solution involving two or more

parameters

:

x^-\-y^-\-z^= 2/^,

x^+y^-\-z^= 2^^,

x^+y^+z^+u'=kt"*,

x^-{-2y^-\-;^z^=t^,

(Carmichael, 1913.)

39. Show how to find r rational numbers such that if a given number is added

to their sum or to the sum of any ;— i of them the results shall all be squares.

(Holm, Cunningham, Wallis, 1906.)

40. Find several cubes such that the sum of the divisors of each is a square.

(Fermat.)

41. Find several squares such that the sum of the divisors of each is a cube.

(Fermat.)

42. Prove that 25 is the only square which is 2 less than a cube. Prove that

4 and 121 are the only squares each of which is four less than a cube. (Fermat.)

43. Show how to determine an unlimited number of Pythagorean triangles

having the same area. (Fermat.)

44. Prove that the number 2(.v'-+.vy+>'-) cannot be a square when x and

y are rational. (Fermat.)

45. Prove that the equation x-— 2—m{y'^-\-2) has no solution in positive

integers m, x, y. (Fermat.)

46.* Prove that the equation 2.v;'-— 1= (2^— i)^ has the unique solution

jc=5, y=2. (Fermat; Pepin, 1884.)
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47. Obtain solutions of the system .i:+>'=2<-, a:-+>'-=D^. (Euler.)

48. Find six fifth-power numbers whose sum is a fifth power. (Martin, 1898.)

49. Find a sum of sixth-power numbers whose sum is a sixth power.

(Martin, 1912.)

50. t Find a set of powers of higher degree than the sixth such that their

sum is a power of the same degree. (Compare papers referred to in § 20.)

51. Solve each of the Diophantine equations .vv=:(.t+.'v), s^(a;-+y-) = (xy)-.

(Mathesis (4) 3: 119.)

52. Obtain a solution of the Diophantine system x--\-y--\-z^=ii^, x^-}-y^-\-z^—v^.

(Martin and Davis, 1898.)

53. Apply the following identities to the solution of Diophantine equations:

{a--b^-)»+{a'-+b''y+{2ab)^=2{a^+i4a*b'+b^)',

x^+y^+{x-±yy=2{x^±xY-+y*y-.

(Barisicn, Visschers, 191 1.)

54.* Obtain the general solution of the equation

Xi^+X2-+ . . .-l-.Vn-=.v.vi.r2 . . . Xn. (Hurwitz, 1907.)

55. Show how to obtain solutions of the system

-r2_j_-y2^2:;-= , x'^-\-2y^-\-z-=[J, 2.r-+y--fc-= . (Legendre.)

56. Show how to obtain solutions of the system x--\-y-—z'-=Q,

x-—y--'rs-=0, —x-+y-+z-=n- (Legendre.)

57.* Develop a theory of the Diophantine system

a= x--{-y-+ii--\-v-,

b=x+y+u+v.

Apply the results to several problems in the theorj' of numbers.

(Cauchy, Legendre.)

58.* Investigate the solutions of the equation

x'+{x+ry+ {x+2ry+. . .+ [x+{n-i)rV^y\

(Genocchi, 1865.)

59. Determine systems of four numbers such that the sum of everj' two in

a system shall be a cube. (Fermat.)

60.* Develop a general theory of the equation {n-\-4)x-—ny-=4.

(Realis, 1883.)

61.* Determine properties of the integers a, b, c, d such that the equation

ax^+by^+cz'^+du'^ =0 shall have integral solutions. (Meyer, 1884.)

62.* Show how to write the product of two sums of eight squares as a sum

of eight squares. (Thomson, 1877.)

63.1 Develop the theory of the Diophantine equation

.Vi .V2 Xn

where .ri, xo, . . ., Xn, are restricted to be positive integers. In particular

show that the maximum value of an x which can occur in a solution is Un where

ut+i=uk{ut:+i) and tii=i and find the other integers which go to make up a
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solution containing this number Un. (Problem and result communicated to the

author by O. D. Kellogg.)

64. t Develop a theory of the system

.ri+.V2+ . . .+.v„= Vi+y2+. . .-\-yn,

xr-\-X2'^-\-. . .+x„==yi-+3'2-+. • .+yn^.

Generalize the results by adding further similar equations with exponents

3, 4, . . . (Longchamps, 1889; Frolov, 1889; Aubry, 1914.)

654 Observe that

x-\-y

and thence show how to extend the set of numbers of the form {x^-Vy^)/{x-\-y)

by generalization of variables so as to form a domain with respect to multi-

phcation. Treat likewise the forms {x^+y^)/{x-\-y), {x''-\-y')/{x-\-y). Gen-

eralize to the form {x^-\-y^)/{x-\-y), where p is any odd prime. (Compare

Bachmann's Zahlentheorie, III, p. 206.)

66. t Apply the results obtained in Exercise 65 to the solution of problems

in Diophantine analysis.

67. t Develop the theory of the equation x*+y^=tnz- for given values of m.

(See examples of solutions in Intcrmed. d. Math., Vol. XVIII, p. 45.)

68. t Develop the theory of the equation .v"+y"4-2''= «"+!'" for various

values of the positive integral exponent n. (Gerardin, 1910.)

69.1 Equations of the form

x =^y +c, (i)

where c is a given number, have been investigated by several writers. In par-

ticular, the case c= i has been treated in several papers, the only known solu-

tion for the latter case (in which in and n are greater than unity) being .v=3,

m=2, y=2, «=3. Investigate the general theory of Eq. (1), summarizing the

results in the literature and adding to them. In particular, determine whether

other consecutive integers than 8 and can be perfect powers. (See Proc. Lond.

Math. Soc. (2) 13 (1914^: 60-80.)

yo.f Determine whether the sum either of n nth powers or of w— i wth powers

can itself be an nth power when n is greater than 3.

71.* The equation

in which Fix) denotes an irreducible polynomial in x of degree r (;-> 2) with integral

coefficients and c is an integer, has only a finite number of solutions in integers p
and q. (Thue, 1908.)
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